Periodic Fluid Flow and Heat Transfer in a Square Cavity Due to an Insulated or Isothermal Rotating Cylinder

被引:55
作者
Shih, Y-C. [2 ]
Khodadadi, J. M. [1 ]
Weng, K-H. [2 ]
Ahmed, A. [3 ]
机构
[1] Auburn Univ, Dept Mech Engn, Auburn, AL 36849 USA
[2] Natl Taipei Univ Technol, Dept Energy & Refrigerating Air Conditioning Engn, Taipei 106, Taiwan
[3] Auburn Univ, Dept Aerosp Engn, Auburn, AL 36849 USA
来源
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME | 2009年 / 131卷 / 11期
关键词
CONVECTION;
D O I
10.1115/1.3154620
中图分类号
O414.1 [热力学];
学科分类号
摘要
The periodic state of laminar flow and heat transfer due to an insulated or isothermal rotating cylinder object in a square cavity is investigated computationally. A finite-volume-based computational methodology utilizing primitive variables is used. Various rotating objects (circle, square, and equilateral triangle) with different sizes are placed in the middle of a square cavity A combination of a fixed computational grid and a sliding mesh was utilized for the square and triangle shapes. For the insulated and isothermal objects, the cavity is maintained as differentially heated and isothermal enclosures, respectively. Natural convection heat transfer is neglected. For a given shape of the object and a constant angular velocity, a range of rotating Reynolds numbers are covered for a Pr = 5 fluid. The Reynolds numbers were selected so that the flow fields are not generally affected by the Taylor instabilities (Ta < 1750). The periodic flow field, the interaction Of the rotating objects with the recirculating vortices at the four corners, and the periodic channeling effect of the traversing vertices are clearly elucidated. The simulations of the dynamic flow fields were confirmed against experimental data obtained by particle image velocimetry. The corresponding thermal fields in relation to the evolving flow patterns and the skewness of the temperature contours in comparison to the conduction-only case were discussed. The skewness is observed to become more marked as the Reynolds number is lowered. Transient variations of the average Nusselt numbers of the respective systems show that for high Re numbers, a quasiperiodic behavior due to the onset of the Taylor instabilities is dominant, whereas for low Re numbers, periodicity of the system is clearly observed. Time-integrated average Nusselt numbers of the insulated and isothermal object systems were correlated with the rotational Reynolds number and shape of the object. For high Re numbers, the performance of the system is independent of the shape of the object. On the other hand, with lowering of the hydraulic diameter (i.e., bigger objects), the triangle and the circle exhibit the highest and lowest heat transfers, respectively. High intensity of the periodic channeling and not its frequency is identified as the cause of the observed enhancement. [DOI: 10.1115/1.3154620]
引用
收藏
页码:1 / 11
页数:11
相关论文
共 15 条
[1]   The Shear-Slip Mesh Update Method [J].
Behr, M ;
Tezduyar, T .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 174 (3-4) :261-274
[2]   Fully developed laminar flow of purely viscous non-Newtonian liquids through annuli, including the effects of eccentricity and inner-cylinder rotation [J].
Escudier, MP ;
Oliveira, PJ ;
Pinho, FT .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2002, 23 (01) :52-73
[3]  
*FLUENT INC, 2004, FLUENT US GUID VERS
[4]   CELLULAR STOKES-FLOW INDUCED BY ROTATION OF A CYLINDER IN A CLOSED CHANNEL [J].
HELLOU, M ;
COUTANCEAU, M .
JOURNAL OF FLUID MECHANICS, 1992, 236 :557-577
[5]   Flow patterns in a two-roll mill [J].
Hills, CP .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2002, 55 (02) :273-296
[6]  
Kimura T., 1995, Heat Transfer - Japanese Research, V24, P504
[7]   STEADY FLOW BETWEEN A ROTATING CIRCULAR-CYLINDER AND FIXED SQUARE CYLINDER [J].
LEWIS, E .
JOURNAL OF FLUID MECHANICS, 1979, 95 (DEC) :497-513
[8]  
MIDDLEMAN S, 1997, INTRO FLUID DYNAMICS, pCH10
[9]  
MOFFATT HK, 1964, ARCH MECH STOSOW, V2, P365
[10]  
Patankar S., 1980, NUMERICAL HEAT TRANS