Turning conductive carbon nanospheres into nanosheets for high-performance supercapacitors of MnO2 nanorods

被引:50
|
作者
Phattharasupakun, Nutthaphon [1 ]
Wutthiprom, Juthaporn [1 ]
Chiochan, Poramane [1 ]
Suktha, Phansiri [1 ]
Suksomboon, Montakan [1 ]
Kalasina, Saran [1 ]
Sawangphruk, Montree [1 ]
机构
[1] Vidyasirimedhi Inst Sci & Technol, Sch Energy Sci & Engn, Dept Chem & Biomol Engn, Rayong 21210, Thailand
关键词
ELECTRODE MATERIALS; FACILE SYNTHESIS; GRAPHENE OXIDE; DESIGN; COMPOSITES; NANOTUBES;
D O I
10.1039/c5cc09648k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Oxidized carbon nanosheets (OCNs), produced from black carbon nanospheres and used as a conductive additive in the supercapacitor electrodes of MnO2 nanorods, can significantly improve the charge-storage performance of the symmetric MnO2-nanorod supercapacitors with a maximum specific energy of 64 W h kg(-1) and power of 3870 W kg(-1). An optimum material composition of the supercapacitor electrode finely tuned is 60: 30: 10 wt% of MnO2: OCN: PVDF, respectively. Interestingly, after 5000 charge/discharge cycles, the oxidation numbers of Mn at the positive and negative electrodes of the as-fabricated supercapacitor are +3.22 and +3.04, respectively.
引用
收藏
页码:2585 / 2588
页数:4
相关论文
共 50 条
  • [41] Nanoarchitectured MnO2 Confined to Mesoporous Carbon Microspheres as Bifunctional Electrodes for High-Performance Supercapacitors and Lithium-Ion Capacitors
    Liu, Qizhi
    Ma, Cheng
    Qiao, Wenming
    Ling, Licheng
    Wang, Jitong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (04) : 1748 - 1760
  • [42] Temperature driven high-performance pseudocapacitor of carbon nano-onions supported urchin like structures of α-MnO2 nanorods
    Gupta, Shobhnath P.
    Gosavi, Suresh W.
    Late, Dattatray J.
    Qiao, Qiquan
    Walke, Pravin S.
    ELECTROCHIMICA ACTA, 2020, 354
  • [43] Facile preparation of MnO2@C composite nanorods for high-performance supercapacitors
    Guo, Zengcai
    Mu, Jingbo
    Che, Hongwei
    Wang, Guangshuo
    Liu, Aifeng
    Zhang, Xiaoliang
    Zhang, Zhixiao
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2016, 27 (12) : 13314 - 13322
  • [44] A dandelion-like carbon microsphere/MnO2 nanosheets composite for supercapacitors
    Zhang, Xuanxuan
    Ran, Fen
    Fan, Huili
    Tan, Yongtao
    Zhao, Lei
    Li, Xiaoming
    Kong, Lingbin
    Kang, Long
    JOURNAL OF ENERGY CHEMISTRY, 2014, 23 (01) : 82 - 90
  • [45] Novel Mesoporous Carbon-Carbonaceous Materials Nanostructures Decorated with MnO2 Nanosheets for Supercapacitors
    Wen, Zhong Quan
    Li, Min
    Zhu, Shi Jin
    Wang, Tian
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (03): : 1810 - 1820
  • [46] Vertically Standing MnO2 Nanowalls Grown on AgCNT-Modified Carbon Fibers for High-Performance Supercapacitors
    Ko, Wen-Yin
    Liu, Yu-Che
    Lai, Jun-Yan
    Chung, Chia-Ching
    Lin, Kuan-Jiuh
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (01) : 669 - +
  • [47] Hierarchical three-dimensional MnO2/carbon@TiO2 nanotube arrays for high-performance supercapacitors
    Wang, Zicheng
    Wang, Yan
    Shu, Xia
    Yu, Cuiping
    Zhang, Jianfang
    Cui, Jiewu
    Qin, Yongqiang
    Zheng, Hongmei
    Zhang, Yong
    Wu, Yucheng
    RSC ADVANCES, 2016, 6 (68): : 63642 - 63651
  • [48] Core/shell nanorodsof MnO2/carbon embedded with Ag nanoparticles as high-performance electrode materials for supercapacitors
    Guan, Yuming
    Guo, Zengcai
    Che, Hongwei
    Mu, Jingbo
    Zhang, Xiaoliang
    Zhang, Zhixiao
    Wang, Guangshuo
    Bai, Yongmei
    Xie, Hailong
    CHEMICAL ENGINEERING JOURNAL, 2018, 331 : 23 - 30
  • [49] MnO2/reduced graphene oxide composite as high-performance electrode for flexible supercapacitors
    Ye, Kai-Hang
    Liu, Zhao-Qing
    Xu, Chang-Wei
    Li, Nan
    Chen, Yi-Bo
    Su, Yu-Zhi
    INORGANIC CHEMISTRY COMMUNICATIONS, 2013, 30 : 1 - 4
  • [50] Facile Fabrication of MnO2/Graphene/Ni Foam Composites for High-Performance Supercapacitors
    Liu, Rui
    Jiang, Rui
    Chu, Yu-Han
    Yang, Wein-Duo
    NANOMATERIALS, 2021, 11 (10)