Two-dimensional steady edge waves. Part II: Solitary waves

被引:3
作者
Ehrnstroem, Mats [1 ]
Escher, Joachim [1 ]
Matioc, Bogdan-Vasile [1 ]
机构
[1] Leibniz Univ Hannover, Inst Angew Math, D-30167 Hannover, Germany
关键词
Existence; A priori estimates; Water waves; Edge waves; Solitary wave solutions; DEEP-WATER WAVES; VORTICITY; SYMMETRY; TRAJECTORIES;
D O I
10.1016/j.wavemoti.2009.06.004
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We prove existence for two-dimensional solitary steady water waves propagating along the beach. The proof relies upon recent results for the periodic case, in combination with Sobolev estimates for edge wave solutions. (C) 2009 Elsevier B. V. All rights reserved.
引用
收藏
页码:372 / 378
页数:7
相关论文
共 19 条
[1]  
[Anonymous], 1998, CLASSICS MATH
[2]  
Caflisch R., 1993, HYDRODYNAMICS
[3]   Symmetry of steady deep-water waves with vorticity [J].
Constantin, A ;
Escher, J .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2004, 15 :755-768
[4]   Symmetry of steady periodic surface water waves with vorticity [J].
Constantin, A ;
Escher, J .
JOURNAL OF FLUID MECHANICS, 2004, 498 :171-181
[5]   Edge waves along a sloping beach [J].
Constantin, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (45) :9723-9731
[6]   On the deep water wave motion [J].
Constantin, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (07) :1405-1417
[7]   Particle trajectories in linear deep-water waves [J].
Constantin, Adrian ;
Ehrnstrom, Mats ;
Villari, Gabriele .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (04) :1336-1344
[8]   Symmetry of steady periodic gravity water waves with vorticity [J].
Constantin, Adrian ;
Ehrnstrom, Mats ;
Wahlen, Erik .
DUKE MATHEMATICAL JOURNAL, 2007, 140 (03) :591-603
[9]   Particle trajectories in solitary water waves [J].
Constantin, Adrian ;
Escher, Joachim .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 44 (03) :423-431
[10]   Two-dimensional steady edge waves. Part I: Periodic waves [J].
Ehrnstroem, Mats ;
Escher, Joachim ;
Matioc, Bogdan-Vasile .
WAVE MOTION, 2009, 46 (06) :363-371