EXISTENCE OF ASYMPTOTICALLY PERIODIC SOLUTIONS OF SCALAR VOLTERRA DIFFERENCE EQUATIONS

被引:10
作者
Diblik, Josef [1 ]
Ruzickova, Miroslava [1 ]
Schmeidel, Ewa [2 ]
机构
[1] Univ Zilina, Dept Math, Fac Sci, Univ 8215-1, SK-01026 Zilina, Slovakia
[2] Poznan Univ Tech, Fac Elect Engn, Inst Math, PL-60965 Poznan, Poland
来源
DIFFERENTIAL AND DIFFERENCE EQUATIONS AND APPLICATIONS 2008 | 2009年 / 43卷
关键词
asymptotically periodic solution; asymptotic behavior of solutions; Volterra difference equation;
D O I
10.2478/v10127-009-0024-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There is used a version of Schauder's fixed point theorem to prove the existence of asymptotically periodic solutions of a scalar Volterra difference equation. Along with the existence of asymptotically periodic solutions, sufficient conditions for the nonexistence of such solutions are derived. Results are illustrated on examples.
引用
收藏
页码:51 / +
页数:3
相关论文
共 10 条
[1]  
Agarwal R. P., 2000, MONOGRAPHS TXB PURE, V228
[2]   PERIODIC-SOLUTIONS OF FIRST-ORDER LINEAR DIFFERENCE-EQUATIONS [J].
AGARWAL, RP ;
POPENDA, J .
MATHEMATICAL AND COMPUTER MODELLING, 1995, 22 (01) :11-19
[3]  
Elaydi S., 1998, J. Differ.Equations Appl, V3, P203, DOI DOI 10.1080/
[4]  
Elaydi S., 2005, UNDERGRAD TEXTS MATH
[5]   Periodic solutions of Volterra difference equations and attractivity [J].
Furumochi, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (06) :4013-4024
[6]  
Furumochi T., 2002, VIETNAM J MATH, V30, P537
[7]  
Kocic V.L., 1993, Math. Appl, V256
[8]  
MUSIELAK J, 1976, WSTEP ANALIZY FUNKCJ
[9]  
Popenda J., 1999, FACTA U SER MATH INF, V14, P31
[10]  
Popenda J., 1999, ARCH MATH, V35, P13