DeepEC: Adversarial attacks against graph structure prediction models

被引:20
作者
Xian, Xingping [1 ]
Wu, Tao [1 ]
Qiao, Shaojie [2 ]
Wang, Wei [3 ]
Wang, Chao [4 ]
Liu, Yanbing [5 ]
Xu, Guangxia [6 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Cybersecur & Informat Law, Chongqing, Peoples R China
[2] Chengdu Univ Informat Technol, Sch Software Engn, Chengdu, Peoples R China
[3] Sichuan Univ, Inst Cybersecur, Chengdu, Peoples R China
[4] Chongqing Univ, Inst Elect Engn, Chongqing, Peoples R China
[5] Chongqing Univ Posts & Telecommun, Chongqing Engn Lab Internet & Informat Secur, Chongqing, Peoples R China
[6] Chongqing Univ Posts & Telecommun, Dept Software Engn, Chongqing, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Graph data; Adversarial attacks; Link prediction; Structural perturbation; Deep ensemble coding; LINK-PREDICTION; COMPLEX NETWORKS;
D O I
10.1016/j.neucom.2020.07.126
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Inspired by the practical importance of graph structured data, link prediction, one of the most frequently applied tasks on graph data, has garnered considerable attention in recent years, and they have been widely applied in item recommendation, privacy inference attack, knowledge graph completion, fraud detection, and other fields. However, recent studies show that machine learning-based intelligent systems are vulnerable to adversarial attacks, which has recently inspired much research on the security problems of machine learning in the context of computer vision, natural language processing, physical world, etc. Nonetheless, there is a lack of understanding of the vulnerability of link prediction methods in face of adversarial attacks. To unveil the weaknesses and aid in the development of robust link prediction methods, we propose a deep architecture-based adversarial attack method, called Deep Ensemble Coding, against link prediction. In particular, based on the assumption that links play different structural roles in structure organization, we propose a deep linear coding-based structure enhancement mechanism to generate adversarial examples. We also empirically investigate other adversarial attack methods for graph data, including heuristic and evolutionary perturbation methods. Based on the comprehensive experiments conducted on various real-world networks, we can conclude that the proposed adversarial attack method has satisfactory performance for link prediction. Moreover, we can observe that state-of-the-art link prediction algorithms are vulnerable to adversarial attacks and, for adversarial defense, the attack can be viewed as a robustness evaluation for the construction of robust link prediction methods. Inspired by the practical importance of graph structured data, link prediction, one of the most fre-quently applied tasks on graph data, has garnered considerable attention in recent years, and they have been widely applied in item recommendation, privacy inference attack, knowledge graph completion, fraud detection, and other fields. However, recent studies show that machine learning-based intelligent systems are vulnerable to adversarial attacks, which has recently inspired much research on the secu-rity problems of machine learning in the context of computer vision, natural language processing, phys-ical world, etc. Nonetheless, there is a lack of understanding of the vulnerability of link prediction methods in face of adversarial attacks. To unveil the weaknesses and aid in the development of robust link prediction methods, we propose a deep architecture-based adversarial attack method, called Deep Ensemble Coding, against link prediction. In particular, based on the assumption that links play differ-ent structural roles in structure organization, we propose a deep linear coding-based structure enhancement mechanism to generate adversarial examples. We also empirically investigate other adversarial attack methods for graph data, including heuristic and evolutionary perturbation methods. Based on the comprehensive experiments conducted on various real-world networks, we can conclude that the proposed adversarial attack method has satisfactory performance for link prediction. Moreover, we can observe that state-of-the-art link prediction algorithms are vulnerable to adversarial attacks and, for adversarial defense, the attack can be viewed as a robustness evaluation for the construction of robust link prediction methods. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:168 / 185
页数:18
相关论文
共 86 条
[1]   Privacy Preserving Social Network Data Publication [J].
Abawajy, Jemal H. ;
Ninggal, Mohd Izuan Hafez ;
Herawan, Tutut .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2016, 18 (03) :1974-1997
[2]   Friends and neighbors on the Web [J].
Adamic, LA ;
Adar, E .
SOCIAL NETWORKS, 2003, 25 (03) :211-230
[3]   Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey [J].
Akhtar, Naveed ;
Mian, Ajmal .
IEEE ACCESS, 2018, 6 :14410-14430
[4]   Network link prediction by global silencing of indirect correlations [J].
Barzel, Baruch ;
Barabasi, Albert-Laszlo .
NATURE BIOTECHNOLOGY, 2013, 31 (08) :720-725
[5]   Securing Social Media User Data - An Adversarial Approach [J].
Beigi, Ghazaleh ;
Zhang, Yanchao ;
Shu, Kai ;
Liu, Huan .
HT'18: PROCEEDINGS OF THE 29TH ACM CONFERENCE ON HYPERTEXT AND SOCIAL MEDIA, 2018, :165-173
[6]   Representation Learning: A Review and New Perspectives [J].
Bengio, Yoshua ;
Courville, Aaron ;
Vincent, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1798-1828
[7]  
Bojchevski A, 2019, PR MACH LEARN RES, V97
[8]   A survey of graph-modification techniques for privacy-preserving on networks [J].
Casas-Roma, Jordi ;
Herrera-Joancomarti, Jordi ;
Torra, Vicenc .
ARTIFICIAL INTELLIGENCE REVIEW, 2017, 47 (03) :341-366
[9]  
Chakraborty, 2018, ARXIV181000069
[10]   Eigen-Optimization on Large Graphs by Edge Manipulation [J].
Chen, Chen ;
Tong, Hanghang ;
Prakash, B. Aditya ;
Eliassi-Rad, Tina ;
Faloutsos, Michalis ;
Faloutsos, Christos .
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2016, 10 (04)