Stability of the standing waves of the concentrated NLSE in dimension two

被引:8
作者
Adami, Riccardo [1 ]
Carlone, Raffaele [2 ]
Correggi, Michele [3 ]
Tentarelli, Lorenzo [1 ]
机构
[1] Politecn Torino, Dipartimento Sci Matemat GL Lagrange, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[2] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, MSA, Via Cinthia, I-80126 Naples, Italy
[3] Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
来源
MATHEMATICS IN ENGINEERING | 2021年 / 3卷 / 02期
关键词
nonlinear Schrodinger equation; point interactions; standing waves; orbital stability; NONLINEAR SCHRODINGER-EQUATION; BLOW-UP; GROUND-STATES; SYSTEMS;
D O I
10.3934/mine.2021011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we will continue the analysis of two dimensional Schrodinger equation with a fixed, pointwise, nonlinearity started in [2, 13]. In this model, the occurrence of a blow-up phenomenon has two peculiar features: the energy threshold under which all solutions blow up is strictly negative and coincides with the infimum of the energy of the standing waves; there is no critical power nonlinearity, i.e., for every power there exist blow-up solutions. Here we study the stability properties of stationary states to verify whether the anomalies mentioned before have any counterpart on the stability features.
引用
收藏
页数:15
相关论文
共 31 条
[1]  
Abramovitz M., 1965, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables
[2]   Blow-up solutions for the Schrodinger equation in dimension three with a concentrated nonlinearity [J].
Adami, R ;
Dell'Antonio, G ;
Figari, R ;
Teta, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (01) :121-137
[3]   The Cauchy problem for the Schrodinger equation in dimension three with concentrated nonlinearity [J].
Adami, R ;
Dell'Antonio, G ;
Figari, R ;
Teta, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (03) :477-500
[4]   A class of nonlinear Schrodinger equations with concentrated nonlinearity [J].
Adami, R ;
Teta, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 180 (01) :148-175
[5]   Blow-up for the pointwise NLS in dimension two: Absence of critical power [J].
Adami, Riccardo ;
Carlone, Raffaele ;
Correggi, Michele ;
Tentarelli, Lorenzo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (01) :1-37
[6]   ASYMPTOTIC STABILITY FOR STANDING WAVES OF A NLS EQUATION WITH SUBCRITICAL CONCENTRATED NONLINEARITY IN DIMENSION THREE: NEUTRAL MODES [J].
Adami, Riccardo ;
Noja, Diego ;
Ortoleva, Cecilia .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (11) :5837-5879
[7]   Stability and Symmetry-Breaking Bifurcation for the Ground States of a NLS with a δ′ Interaction [J].
Adami, Riccardo ;
Noja, Diego .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 318 (01) :247-289
[8]   Orbital and asymptotic stability for standing waves of a nonlinear Schrodinger equation with concentrated nonlinearity in dimension three [J].
Adami, Riccardo ;
Noja, Diego ;
Ortoleva, Cecilia .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (01)
[9]   Quantum turbulence and resonant tunneling [J].
Azbel, MY .
PHYSICAL REVIEW B, 1999, 59 (12) :8049-8053
[10]   Current coupling of drift-diffusion models and Schrodinger-Poisson systems: Dissipative hybrid models [J].
Baro, M ;
Neidhardt, H ;
Rehberg, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (03) :941-981