On bivariate quadratic hermite-Pade approximation

被引:0
|
作者
Zheng, Chengde [1 ]
Li, Zhibin [1 ]
机构
[1] Dalian Jiaotong Univ, Dept Math, Dalian 116028, Liaoning, Peoples R China
关键词
hermite-Pade approximation; bivariate Pade approximation; bivariate analytic function;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The existence and local behavior is analysed of the off-diagonal bivariate quadratic Pade approximation to a bivariate function which has a given power series expansion about the origin. It is shown that the off-diagonal bivariate quadratic Hermite-Pade form always defines a bivariate quadratic function and that this function is analytic in a neighborhood of the origin.
引用
收藏
页码:69 / 71
页数:3
相关论文
共 50 条
  • [41] High-order recurrence relations, Hermite-Pade approximation and Nikishin systems
    Barrios Rolania, D.
    Geronimo, J. S.
    Lopez Lagomasino, G.
    SBORNIK MATHEMATICS, 2018, 209 (03) : 385 - 420
  • [42] Mixed type Hermite-Pade approximation inspired by the Degasperis-Procesi equation
    Lopez Lagomasino, G.
    Medina Peralta, S.
    Szmigielski, J.
    ADVANCES IN MATHEMATICS, 2019, 349 : 813 - 838
  • [43] A Viskovatov algorithm for Hermite-Pade polynomials
    Ikonomov, N. R.
    Suetin, S. P.
    SBORNIK MATHEMATICS, 2021, 212 (09) : 1279 - 1303
  • [44] Interpolation properties of Hermite-Pade polynomials
    Suetin, S. P.
    RUSSIAN MATHEMATICAL SURVEYS, 2021, 76 (03) : 543 - 545
  • [45] Distribution of the zeros of Hermite-Pade polynomials
    Komlov, A. V.
    Suetin, S. P.
    RUSSIAN MATHEMATICAL SURVEYS, 2015, 70 (06) : 1179 - 1181
  • [46] ASYMPTOTIC FORM OF HERMITE-PADE POLYNOMIALS
    BAUMEL, RT
    GAMMEL, JL
    NUTTALL, J
    IMA JOURNAL OF APPLIED MATHEMATICS, 1981, 27 (03) : 335 - 357
  • [47] A differential equation for Hermite-Pade polynomials
    Martinez-Finkelshtein, A.
    Rakhmanov, E. A.
    Suetin, S. P.
    RUSSIAN MATHEMATICAL SURVEYS, 2013, 68 (01) : 183 - 185
  • [48] 4th Degree algebraic Hermite-Pade approximation to the exponential function
    Zheng, CD
    Wang, RH
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2004, 81 (01) : 35 - 48
  • [49] Analysis of MHD Jeffery-Hamel flow with nanoparticles by hermite-pade approximation
    Alam, M.S.
    Khan, M.A.H.
    International Journal of Engineering, Transactions A: Basics, 2015, 28 (04): : 660 - 669
  • [50] Application of Hermite-Pade approximation for detecting singularities of some boundary value problems
    Filali, Youness
    Er-Riani, Mustapha
    El Jarroudi, Mustapha
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2021, 22 (01) : 59 - 67