Krall-type orthogonal polynomials in several variables

被引:15
作者
Fernandez, Lidia [1 ,2 ]
Perez, Teresa E. [1 ,2 ]
Pinar, Miguel A. [1 ,2 ]
Xu, Yuan [3 ]
机构
[1] Univ Granada, Dept Matemat Aplicada, E-18071 Granada, Spain
[2] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain
[3] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
Orthogonal polynomials in several variables; Krall-type orthogonal polynomials; Reproducing kernel; WEIGHT;
D O I
10.1016/j.cam.2009.02.067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a bilinear form obtained by adding a Dirac mass to a positive definite moment functional defined in the linear space of polynomials in several variables, explicit formulas of orthogonal polynomials are derived from the orthogonal polynomials associated with the moment functional. Explicit formula for the reproducing kernel is also derived and used to establish certain inequalities for classical orthogonal polynomials. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1519 / 1524
页数:6
相关论文
共 41 条
[1]   Properties of some families of hypergeometric orthogonal polynomials in several variables [J].
Van Diejen, JF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (01) :233-270
[2]   The asymptotics of the kernel functions associated to orthogonal polynomials in several variables on the unit ball [J].
Duenas, Herbert ;
Gomez, Wilmer M. .
BOLETIN DE MATEMATICAS, 2015, 22 (01) :39-53
[3]   Sobolev-type orthogonal polynomials on the unit ball [J].
Delgado, Antonia M. ;
Perez, Teresa E. ;
Pinar, Miguel A. .
JOURNAL OF APPROXIMATION THEORY, 2013, 170 :94-106
[4]   AN INTEGRAL IDENTITY WITH APPLICATIONS IN ORTHOGONAL POLYNOMIALS [J].
Xu, Yuan .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (12) :5253-5263
[5]   ORTHOGONAL POLYNOMIALS FOR AREA-TYPE MEASURES AND IMAGE RECOVERY [J].
Saff, E. B. ;
Stahl, H. ;
Stylianopoulos, N. ;
Totik, V. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (03) :2442-2463
[6]   Orthogonal Polynomials and Fourier Orthogonal Series on a Cone [J].
Xu, Yuan .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (03)
[7]   Orthogonal polynomials on domains of revolution [J].
Xu, Yuan .
STUDIES IN APPLIED MATHEMATICS, 2024, 153 (02)
[8]   Numerical quadratures and orthogonal polynomials [J].
Milovanovic, Gradimir V. .
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2011, 56 (02) :449-464
[9]   A semiclassical perspective on multivariate orthogonal polynomials [J].
Alvarez de Moralesa, Maria ;
Fernandez, Lidia ;
Perez, Teresa E. ;
Pinar, Miguel A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 214 (02) :447-456
[10]   PICK INTERPOLATION IN SEVERAL VARIABLES [J].
Hamilton, Ryan .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (06) :2097-2103