An efficient nonmonotone adaptive cubic regularization method with line search for unconstrained optimization problem

被引:5
作者
Li, Qun [1 ]
Zheng, Bing [1 ]
Zheng, Yutao [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Unconstrained optimization; Adaptive cubic regularization method; Nonmonotone line search; Barzilai-Borwein gradient method; BORWEIN GRADIENT-METHOD; TRUST-REGION METHOD; BARZILAI;
D O I
10.1016/j.aml.2019.05.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present an efficient nonmonotone adaptive cubic regularization method with line search for solving large-scale unconstrained optimization problem. Its global convergence is analyzed. Numerical experiments are performed to show the efficiency and effectiveness of the proposed method and its superiority to the other existing methods. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:74 / 80
页数:7
相关论文
共 18 条
[1]   2-POINT STEP SIZE GRADIENT METHODS [J].
BARZILAI, J ;
BORWEIN, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (01) :141-148
[2]   Cubic regularization in symmetric rank-1 quasi-Newton methods [J].
Benson H.Y. ;
Shanno D.F. .
Mathematical Programming Computation, 2018, 10 (04) :457-486
[3]   A cubic regularization algorithm for unconstrained optimization using line search and nonmonotone techniques [J].
Bianconcini, Tommaso ;
Sciandrone, Marco .
OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (05) :1008-1035
[4]   On the use of iterative methods in cubic regularization for unconstrained optimization [J].
Bianconcini, Tommaso ;
Liuzzi, Giampaolo ;
Morini, Benedetta ;
Sciandrone, Marco .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 60 (01) :35-57
[5]   Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results [J].
Cartis, Coralia ;
Gould, Nicholas I. M. ;
Toint, Philippe L. .
MATHEMATICAL PROGRAMMING, 2011, 127 (02) :245-295
[6]  
Conn A., 2000, mos-siam series on optimization), DOI [DOI 10.1137/1.9780898719857, https://doi.org/10.1137/1.9780898719857]
[7]   A family of spectral gradient methods for optimization [J].
Dai, Yu-Hong ;
Huang, Yakui ;
Liu, Xin-Wei .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 74 (01) :43-65
[8]   Benchmarking optimization software with performance profiles [J].
Dolan, ED ;
Moré, JJ .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :201-213
[9]   CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization [J].
Gould, Nicholas I. M. ;
Orban, Dominique ;
Toint, Philippe L. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 60 (03) :545-557
[10]   A new adaptive Barzilai and Borwein method for unconstrained optimization [J].
Liu, Hongwei ;
Liu, Zexian ;
Dong, Xiaoliang .
OPTIMIZATION LETTERS, 2018, 12 (04) :845-873