Refined mapping of stripe rust resistance gene YrP10090 within a desirable haplotype for wheat improvement on chromosome 6A

被引:9
作者
Liu, Shengjie [1 ]
Huang, Shuo [1 ]
Zeng, Qingdong [2 ]
Wang, Xiaoting [1 ]
Yu, Rui [1 ]
Wang, Qilin [1 ]
Singh, Ravi P. [3 ]
Bhavani, Sridhar [3 ]
Kang, Zhensheng [2 ]
Wu, Jianhui [1 ]
Han, Dejun [1 ]
机构
[1] Northwest A&F Univ, Coll Agron, State Key Lab Crop Stress Biol Arid Areas, Yangling 712100, Shaanxi, Peoples R China
[2] Northwest A&F Univ, State Key Lab Crop Stress Biol Arid Areas, Plant Protect, Yangling 712100, Shaanxi, Peoples R China
[3] Int Maize & Wheat Improvement Ctr CIMMYT, Texcoco 56237, Estado De Mexic, Mexico
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
GENOME-WIDE ASSOCIATION; F-SP TRITICI; ADULT-PLANT RESISTANCE; LEAF RUST; LOCI; QTL; IDENTIFICATION; INTROGRESSION; ARCHITECTURE; LANDSCAPE;
D O I
10.1007/s00122-021-03801-6
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Key message A large genomic region spanning over 300 Mb on chromosome 6A under intense artificial selection harbors multiple loci associated with favorable traits including stripe rust resistance in wheat. The development of resistance cultivars can be an optimal strategy for controlling wheat stripe rust disease. Although loci for stripe rust resistance have been identified on chromosome 6A in previous studies, it is unclear whether these loci span a common genetic interval, and few studies have attempted to analyze the haplotype changes that have accompanied wheat improvement over the period of modern breeding. In this study, we used F-2:3 families and F-6:7 recombinant inbred lines (RILs) derived from a cross between a resistant CIMMYT wheat accession P10090 and the susceptible landrace Mingxian 169 to improve the resolution of the QTL on chromosome 6A. The co-located QTL, designated as YrP10090, was flanked by SNP markers AX-94460938 and AX-110585473 with a genetic interval of 3.5 cM, however, corresponding to a large physical distance of over 300 Mb in RefSeq v.1.0 (positions 107.1-446.5 Mb). More than 1,300 SNP markers in this genetic region were extracted for haplotype analysis in a panel of 1,461 worldwide common wheat accessions, and three major haplotypes (Hap1, Hap2, and Hap3) were identified. The favorable haplotype Hap1 associated with stripe rust resistance exhibited a large degree of linkage disequilibrium. Selective sweep analyses were performed between different haplotype groups, revealing specific genomic regions with strong artificial selection signals. These regions harbored multiple desirable traits associated with resilience to environmental stress, different yield components, and quality characteristics. P10090 and its derivatives that carry the desirable haplotype can provide a concrete foundation for bread wheat improvement including the genomic selection.
引用
收藏
页码:2005 / 2021
页数:17
相关论文
共 82 条
[1]   Global agricultural intensification during climate change: a role for genomics [J].
Abberton, Michael ;
Batley, Jacqueline ;
Bentley, Alison ;
Bryant, John ;
Cai, Hongwei ;
Cockram, James ;
Costa de Oliveira, Antonio ;
Cseke, Leland J. ;
Dempewolf, Hannes ;
De Pace, Ciro ;
Edwards, David ;
Gepts, Paul ;
Greenland, Andy ;
Hall, Anthony E. ;
Henry, Robert ;
Hori, Kiyosumi ;
Howe, Glenn Thomas ;
Hughes, Stephen ;
Humphreys, Mike ;
Lightfoot, David ;
Marshall, Athole ;
Mayes, Sean ;
Nguyen, Henry T. ;
Ogbonnaya, Francis C. ;
Ortiz, Rodomiro ;
Paterson, Andrew H. ;
Tuberosa, Roberto ;
Valliyodan, Babu ;
Varshney, Rajeev K. ;
Yano, Masahiro .
PLANT BIOTECHNOLOGY JOURNAL, 2016, 14 (04) :1095-1098
[2]  
Allard RW., 1960, PRINCILPES PLANT BRE
[3]  
[Anonymous], 2006, JoinMap4, Software for the calculation of genetic linkage maps in experimental populations
[4]   Shifting the limits in wheat research and breeding using a fully annotated reference genome [J].
Appels, Rudi ;
Eversole, Kellye ;
Feuillet, Catherine ;
Keller, Beat ;
Rogers, Jane ;
Stein, Nils ;
Pozniak, Curtis J. ;
Choulet, Frederic ;
Distelfeld, Assaf ;
Poland, Jesse ;
Ronen, Gil ;
Sharpe, Andrew G. ;
Pozniak, Curtis ;
Barad, Omer ;
Baruch, Kobi ;
Keeble-Gagnere, Gabriel ;
Mascher, Martin ;
Ben-Zvi, Gil ;
Josselin, Ambre-Aurore ;
Himmelbach, Axel ;
Balfourier, Francois ;
Gutierrez-Gonzalez, Juan ;
Hayden, Matthew ;
Koh, ChuShin ;
Muehlbauer, Gary ;
Pasam, Raj K. ;
Paux, Etienne ;
Rigault, Philippe ;
Tibbits, Josquin ;
Tiwari, Vijay ;
Spannagl, Manuel ;
Lang, Daniel ;
Gundlach, Heidrun ;
Haberer, Georg ;
Mayer, Klaus F. X. ;
Ormanbekova, Danara ;
Prade, Verena ;
Simkova, Hana ;
Wicker, Thomas ;
Swarbreck, David ;
Rimbert, Helene ;
Felder, Marius ;
Guilhot, Nicolas ;
Kaithakottil, Gemy ;
Keilwagen, Jens ;
Leroy, Philippe ;
Lux, Thomas ;
Twardziok, Sven ;
Venturini, Luca ;
Juhasz, Angela .
SCIENCE, 2018, 361 (6403) :661-+
[5]   Genetic strategies for improving crop yields [J].
Bailey-Serres, Julia ;
Parker, Jane E. ;
Ainsworth, Elizabeth A. ;
Oldroyd, Giles E. D. ;
Schroeder, Julian I. .
NATURE, 2019, 575 (7781) :109-118
[6]   Characterization of Yr54 and other genes associated with adult plant resistance to yellow rust and leaf rust in common wheat Quaiu 3 [J].
Basnet, B. R. ;
Singh, R. P. ;
Ibrahim, A. M. H. ;
Herrera-Foessel, S. A. ;
Huerta-Espino, J. ;
Lan, C. ;
Rudd, J. C. .
MOLECULAR BREEDING, 2014, 33 (02) :385-399
[7]  
Bates D., 2014, Journal of Statistical Software, DOI [DOI 10.18637/JSS.V067.I01, 10.18637/jss.v067.i01]
[8]  
Beddow JM, 2015, NAT PLANTS, V1, DOI [10.1038/nplants.2015.132, 10.1038/NPLANTS.2015.132]
[9]   Genetic Architecture of Resistance to Stripe Rust in a Global Winter Wheat Germplasm Collection [J].
Bulli, Peter ;
Zhang, Junli ;
Chao, Shiaoman ;
Chen, Xianming ;
Pumphrey, Michael .
G3-GENES GENOMES GENETICS, 2016, 6 (08) :2237-2253
[10]   Genetic architecture underpinning yield component traits in wheat [J].
Cao, Shuanghe ;
Xu, Dengan ;
Hanif, Mamoona ;
Xia, Xianchun ;
He, Zhonghu .
THEORETICAL AND APPLIED GENETICS, 2020, 133 (06) :1811-1823