Whispering Gallery Modes in a Conical Resonator

被引:6
作者
Alekseenko, Ya. V. [1 ]
Monakhov, A. M. [1 ]
Rozhanskii, I. V. [1 ]
机构
[1] Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia
基金
俄罗斯基础研究基金会;
关键词
42.25.Gy; 42.60.Da;
D O I
10.1134/S1063784209110140
中图分类号
O59 [应用物理学];
学科分类号
摘要
A conical closed resonator with perfectly conducting walls is considered. The eigenmodes of the resonator are determined in the first order of perturbation theory, in which the cone angle is a small quantity. A semiclassical approximation is constructed for an arbitrary cone angle; it is shown that the spectrum of whispering gallery modes in this approximation differs insignificantly from the eigenmode spectrum of a cylindrical cavity even for a large cone angle.
引用
收藏
页码:1633 / 1638
页数:6
相关论文
共 8 条
[1]  
Babich VM., 1972, Asymptotic methods in short wave diffraction problems
[2]   Conical quasioptical dielectric resonator [J].
Barannik, AA ;
Bunyaev, SA ;
Cherpak, NT .
TECHNICAL PHYSICS LETTERS, 2005, 31 (10) :811-812
[3]  
Born M, 1969, PRINCIPLES OPTICS
[4]   Mid-infrared ring laser [J].
Krier, A ;
Sherstnev, VV ;
Wright, D ;
Monakhov, AM ;
Hill, G .
ELECTRONICS LETTERS, 2003, 39 (12) :916-917
[5]  
Landau L., 1984, Course of Theoretical Physics, V8
[6]   The problem of the whispering gallery. [J].
Lord Rayleigh .
PHILOSOPHICAL MAGAZINE, 1910, 20 (115-20) :1001-1004
[7]  
Oraevsky AN, 2002, QUANTUM ELECTRON+, V32, P377, DOI [10.1070/QE2002v032n05ABEH002205, 10.1070/QE2001v031n05ABEH002205]
[8]   Tunable whispering gallery modes for spectroscopy and CQED experiments [J].
von Klitzing, W ;
Long, R ;
Ilchenko, VS ;
Hare, J ;
Lefévre-Seguin, V .
NEW JOURNAL OF PHYSICS, 2001, 3 :141-1414