Performance degradation of solid oxide fuel cells analyzed by evolution of electrode processes under polarization

被引:43
|
作者
Lyu, Zewei [1 ]
Li, Hangyue [1 ]
Wang, Yige [1 ]
Han, Minfang [1 ]
机构
[1] Tsinghua Univ, Dept Energy & Power Engn, State Key Lab Control & Simulat Power Syst & Gene, Beijing 100084, Peoples R China
基金
国家重点研发计划;
关键词
Solid oxide fuel cell; Degradation mechanism; Electrochemical impedance spectroscopy; Distribution of relaxation time; Equivalent circuit model; GADOLINIA-DOPED CERIA; ELECTROCHEMICAL PERFORMANCE; IMPEDANCE; OPERATION; STACK; DECONVOLUTION; STABILITY; KINETICS;
D O I
10.1016/j.jpowsour.2020.229237
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical impedance spectroscopy (EIS) is one of the most promising methods to unfold the complex electrode processes in solid oxide fuel cells (SOFCs). In this study, evolution of different electrode processes during galvanostatic operation of a single cell is analyzed based on deconvolution of recorded EIS data. The overall operation can be roughly divided into two stages, i.e. a rapid and nonlinear degradation stage, and a slow and quasi-linear degradation stage. Based on the analysis of EIS measured under open circuit voltage (OCV), it is found that the R-p decreases in the first stage while gradually increases in the second stage, which is mainly due to changes in anodic gas-phase diffusion and cathodic O-2 surface exchange and bulk diffusion processes. The effect of DC electrical current (polarization) on different electrode processes is emphasized and analyzed in detail. Accordingly, we speculate that the dominant degradation mechanism is closely related to the operating current, i.e. performance degradation in small current region is dominated by the deterioration of O-2 surface exchange kinetics at the cathode, while performance degradation in moderate current range is dominated by the weakening of charge transfer reactions at the anode.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Performance, electrochemical process analysis and degradation of gadolinium doped ceria as fuel electrode material for solid oxide electrolysis cells
    Uecker, Jan
    Unachukwu, Ifeanyichukwu D.
    Vibhu, Vaibhav
    Vinke, Izaak C.
    Eichel, Ruediger-A.
    de Haart, L. G. J.
    ELECTROCHIMICA ACTA, 2023, 452
  • [22] Interfacial Stability between Air Electrode and Ceria-Based Electrolyte under Cathodic Polarization in Solid Oxide Fuel Cells
    Matsui, T.
    Komoto, M.
    Muroyama, H.
    Eguchi, K.
    FUEL CELLS, 2014, 14 (06) : 1022 - 1027
  • [23] Degradation mechanism of electrolyte and air electrode in solid oxide electrolysis cells operating at high polarization
    Kim, Jeonghee
    Ji, Ho-Ii
    Dasari, Hari Prasad
    Shin, Dongwook
    Song, Huesup
    Lee, Jong-Ho
    Kim, Byung-Kook
    Je, Hae-June
    Lee, Hae-Weon
    Yoon, Kyung Joong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (03) : 1225 - 1235
  • [24] Polarization analysis of planar solid oxide fuel cells
    Yoshida, T
    Koide, H
    Andoh, M
    Mukaizawa, I
    Someya, Y
    Tsunoda, A
    DENKI KAGAKU, 1996, 64 (06): : 624 - 628
  • [25] Design of electrode for solid oxide fuel cells reactor
    Tagawa, T
    Moe, KK
    Hiramatsu, T
    Goto, S
    SOLID STATE IONICS, 1998, 106 (3-4) : 227 - 235
  • [26] Solid oxide electrolysis cells - Interplay between operating conditions, fuel electrode overpotential and degradation
    Hauch, A.
    Blennow, P.
    SOLID STATE IONICS, 2023, 391
  • [27] Effects of operating conditions on the performance degradation and anode microstructure evolution of anode-supported solid oxide fuel cells
    Xin Yang
    Zhihong Du
    Qian Zhang
    Zewei Lyu
    Shixue Liu
    Zhijing Liu
    Minfang Han
    Hailei Zhao
    InternationalJournalofMinerals,MetallurgyandMaterials, 2023, (06) : 1181 - 1189
  • [28] Effects of operating conditions on the performance degradation and anode microstructure evolution of anode-supported solid oxide fuel cells
    Yang, Xin
    Du, Zhihong
    Zhang, Qian
    Lyu, Zewei
    Liu, Shixue
    Liu, Zhijing
    Han, Minfang
    Zhao, Hailei
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2023, 30 (06) : 1181 - 1189
  • [29] Effects of operating conditions on the performance degradation and anode microstructure evolution of anode-supported solid oxide fuel cells
    Xin Yang
    Zhihong Du
    Qian Zhang
    Zewei Lyu
    Shixue Liu
    Zhijing Liu
    Minfang Han
    Hailei Zhao
    International Journal of Minerals, Metallurgy and Materials, 2023, 30 : 1181 - 1189
  • [30] Compositional Effect of Thin Electrode Functional Layers on the Performance of Solid Oxide Fuel Cells
    Park, Hyeon-Cheol
    Dogan, Fatih
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2011, 8 (06):