Near Infrared Hyperspectral Imaging for the Evaluation of Endosperm Texture in Whole Yellow Maize (Zea maize L.) Kernels

被引:68
|
作者
Manley, Marena [1 ]
Williams, Paul [1 ]
Nilsson, David [2 ,3 ]
Geladi, Paul [3 ]
机构
[1] Univ Stellenbosch, Dept Food Sci, ZA-7602 Stellenbosch, South Africa
[2] UmBio AB, Umea, Sweden
[3] Swedish Univ Agr Sci, Unit Biomass Technol & Chem, KBC Huset, SE-90187 Umea, Sweden
关键词
Maize; kernel hardness; near-infrared; hyperspectral imaging; maize endosperm; commercial hybrids; REFLECTANCE SPECTRA; CORN HARDNESS; FOOD QUALITY; PREDICTION; SPECTROSCOPY; CALIBRATION;
D O I
10.1021/jf9018323
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Near infrared hyperspectral images (HSI) were recorded for whole yellow maize kernels (commercial hybrids) defined as either hard, intermediate, or soft by experienced maize breeders. The images were acquired with a linescan (pushbroom) instrument using a HgCdTe detector. The final image size was 570 x 219 pixels in 239 wavelength bands from 1000 to 2498 nm in steps of approximately 6.5 nm. Multivariate image cleaning was used to remove background and optical errors, in which about two-thirds of all pixels were removed. The cleaned image was used to calculate a principal component analysis (PCA) model after multiplicative scatter correction (MSC) and mean-centering were applied. It was possible to find clusters representing vitreous and floury endosperm (different types of endosperm present in varying ratios in hard and soft kernels) as well as a third type of endosperm by interactively delineating polygon based clusters in the score plot of the second and fourth principal components and projecting the results on the image space. Chemical interpretation of the loading line plots shows the effect of starch density and the protein matrix. The vitreous and floury endosperm clusters were used to make a partial least-squares discriminant analysis (PLS-DA) model, using four components, with a coefficient of determination (R-2) for the y data (kernel hardness category) for the training set of over 85%. This PLS-DA model could be used for prediction in a test set. We show how the prediction images can be interpreted, thus confirming the validity of the PCA classification. The technique presented here is very powerful for laboratory studies of small cereal samples in order to produce localized information,
引用
收藏
页码:8761 / 8769
页数:9
相关论文
共 50 条
  • [11] Analysis of protein, starch and oil content of single intact kernels by near infrared reflectance spectroscopy (NIRS) in maize (Zea mays L.)
    Jiang, H. Y.
    Zhu, Y. J.
    Wei, L. M.
    Dai, J. R.
    Song, T. M.
    Yan, Y. L.
    Chen, S. J.
    PLANT BREEDING, 2007, 126 (05) : 492 - 497
  • [12] Effect of the prolamins in maize (Zea mays L.) grain on tortilla texture
    Sanchez, F. C.
    Salinas, M. Y.
    Vazquez, C. M. G.
    Aguilar, G. N.
    ARCHIVOS LATINOAMERICANOS DE NUTRICION, 2007, 57 (03) : 295 - 301
  • [13] Classification of maize kernel hardness using near infrared hyperspectral imaging
    McGoverin, Cushla M.
    Manley, Marena
    JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2012, 20 (05) : 529 - 535
  • [14] Evaluation of twelve maize (Zea mays L.) cultivars for silage
    Pinto, Andrea Pereira
    Cogo Lancanova, Jose Antonio
    Bernardo Lugao, Simony Marta
    Roque, Ana Paula
    dos Santos Abrahao, Jose Jorge
    Silva e Oliveira, Jackson
    Jorge Leme, Maria Celina
    Mizubuti, Ivone Yurika
    SEMINA-CIENCIAS AGRARIAS, 2010, 31 (04): : 1071 - 1077
  • [15] Evaluation of the maize (Zea mays L.) diversity on the Archipelago of Madeira
    Miguel, Angelo A.
    de Carvalho, Pinheiro
    Gananca, Jose Filipe Teixeira
    Abreu, Ivo
    Sousa, Nelia F.
    dos Santos, Teresa M. Marques
    Vieira, Maria Rita Clemente
    Motto, Mario
    GENETIC RESOURCES AND CROP EVOLUTION, 2008, 55 (02) : 221 - 233
  • [16] Evaluation of the maize (Zea mays L.) diversity on the Archipelago of Madeira
    Miguel Ângelo A. Pinheiro de Carvalho
    José Filipe Teixeira Ganança
    Ivo Abreu
    Nélia F. Sousa
    Teresa M. Marques dos Santos
    Maria Rita Clemente Vieira
    Mario Motto
    Genetic Resources and Crop Evolution, 2008, 55 : 221 - 233
  • [17] Agronomic evaluation of four maize hybrids (Zea mays L.)
    Rios, Amparo
    Machimba, Mauro
    Molina, Angel
    Montenegro, Mario
    GRANJA-REVISTA DE CIENCIAS DE LA VIDA, 2007, 6 (02): : 30 - 33
  • [18] Zinc biofortification of immature maize and sweetcorn (Zea mays L.) kernels for human health
    Cheah, Zhong Xiang
    O'Hare, Tim J.
    Harper, Stephen M.
    Kochanek, Jitka
    Bell, Michael J.
    SCIENTIA HORTICULTURAE, 2020, 272
  • [19] HPLC/MS GLUTATHIONE DETERMINATION IN THE MAIZE (ZEA MAYS L.) KERNELS EXPOSED BY CADMIUM
    Adam, V
    Klejdus, B.
    Zehnalek, J.
    Petrek, P.
    Potesil, D.
    Petrlova, J.
    Zelena, J.
    Mikelova, R.
    Kizek, R.
    Vacek, J.
    Trnkova, L.
    Rozik, R.
    Lubal, P.
    Havel, L.
    ACTA PHYSIOLOGIAE PLANTARUM, 2004, 26 (03) : 210 - 210
  • [20] Evaluation of maize (Zea mays L.) cultivars and density for dryland maize-bean intercropping
    Mutungamiri, A
    Mariga, IK
    Chivinge, OA
    TROPICAL AGRICULTURE, 2001, 78 (01): : 8 - 12