A Multi-scale Multiple Sclerosis Lesion Change Detection in a Multi-sequence MRI

被引:3
作者
Cheng, Myra [1 ]
Galimzianova, Alfiia [1 ]
Lesjak, Ziga [2 ]
Spiclin, Ziga [2 ]
Lock, Christopher B. [1 ]
Rubin, Daniel L. [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Univ Ljubljana, Ljubljana 1000, Slovenia
来源
DEEP LEARNING IN MEDICAL IMAGE ANALYSIS AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT, DLMIA 2018 | 2018年 / 11045卷
关键词
Multiple sclerosis; Change detection; Multi-scale image descriptors;
D O I
10.1007/978-3-030-00889-5_40
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Multiple sclerosis (MS) is a disease characterized by demyelinating lesions in the brain and spinal cord. Quantification of the amount of change in MS lesions in magnetic resonance imaging (MRI) over time is important for evaluation of drug effectiveness in clinical trials. Manual analysis of such longitudinal datasets is time-and cost prohibitive, and also prone to intra-and inter-rater variability. Accurate automated change detection methods would be highly desirable. We propose a new MS lesion change detection method that integrates a voxel's multi-sequence MR intensity with its immediate neighborhood context and the texture of the extended neighborhood in a machine learning framework. On our dataset of 15 patients, the proposed method had higher performance (median AUC-ROC=0.97, AUC-PR=0.43, Wilcoxon's signed rank test, p<0.001) than implemented baseline methods. As such, the proposed method has potential clinical applications as an efficient, low-cost algorithm to capture and quantify local lesion change and growth.
引用
收藏
页码:353 / 360
页数:8
相关论文
共 10 条
[1]   The Insight ToolKit image registration framework [J].
Avants, Brian B. ;
Tustison, Nicholas J. ;
Stauffer, Michael ;
Song, Gang ;
Wu, Baohua ;
Gee, James C. .
FRONTIERS IN NEUROINFORMATICS, 2014, 8
[2]   STATISTICAL AND STRUCTURAL APPROACHES TO TEXTURE [J].
HARALICK, RM .
PROCEEDINGS OF THE IEEE, 1979, 67 (05) :786-804
[3]   Validation of White-Matter Lesion Change Detection Methods on a Novel Publicly Available MRI Image Database [J].
Lesjak, Ziga ;
Pernus, Franjo ;
Likar, Bostjan ;
Spiclin, Ziga .
NEUROINFORMATICS, 2016, 14 (04) :403-420
[4]   Automated detection of multiple sclerosis lesions in serial brain MRI [J].
Llado, Xavier ;
Ganiler, Onur ;
Oliver, Arnau ;
Marti, Robert ;
Freixenet, Jordi ;
Valls, Laia ;
Vilanova, Joan C. ;
Ramio-Torrenta, Lluis ;
Rovira, Alex .
NEURORADIOLOGY, 2012, 54 (08) :787-807
[5]  
Mechrez R., PATCH BASED SEGMENTA, DOI [10.1155/2016/7952541, DOI 10.1155/2016/7952541]
[6]   Fast robust automated brain extraction [J].
Smith, SM .
HUMAN BRAIN MAPPING, 2002, 17 (03) :143-155
[7]   Automatic Lesion Incidence Estimation and Detection in Multiple Sclerosis Using Multisequence Longitudinal MRI [J].
Sweeney, E. M. ;
Shinohara, R. T. ;
Shea, C. D. ;
Reich, D. S. ;
Crainiceanu, C. M. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2013, 34 (01) :68-73
[8]   Texture information in run-length matrices [J].
Tang, XO .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (11) :1602-1609
[9]   N4ITK: Improved N3 Bias Correction [J].
Tustison, Nicholas J. ;
Avants, Brian B. ;
Cook, Philip A. ;
Zheng, Yuanjie ;
Egan, Alexander ;
Yushkevich, Paul A. ;
Gee, James C. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (06) :1310-1320
[10]  
Zhang Y., MRI TEXTURE ANAL MUL, DOI [10.1155/2012/762804, DOI 10.1155/2012/762804]