A Personalized Privacy-Preserving Scheme for Federated Learning

被引:4
作者
Li, Zhenyu [1 ]
机构
[1] Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei, Peoples R China
来源
2022 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, BIG DATA AND ALGORITHMS (EEBDA) | 2022年
关键词
personalized differential privacy; federated learning; stochastic gradient descent; composition theorem;
D O I
10.1109/EEBDA53927.2022.9744805
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Federated learning (FL), which is a state-of-theart distributed machine learning (DML) model, brings the spare resources of mobile devices into full play and provides strong security guarantee to local sensitive data by local differential privacy. However, the introduction of noise data leads to an unignored reduction of model utility. In this paper, we consider the heterogeneity of privacy requirement for various participants in FL and propose a novel federated learning scheme (PGC-LDP) that lets users personally choose their privacy level based on federated stochastic gradient descent algorithm with local differential privacy. In the scheme, we design a new algorithm based on Nguyen's solution in client side and optimize aggregation method in server side. Moreover, we theoretically analyze the privacy guarantee and verify the utility of PGC-LDP on real-world dataset.
引用
收藏
页码:1352 / 1356
页数:5
相关论文
共 50 条
  • [41] Privacy-Preserving Incentive Scheme Design for UAV-Enabled Federated Learning
    Wang, Rui
    Liu, Xin
    Xie, Liang
    Liu, Yiliang
    Su, Zhou
    Liu, Donglan
    Zhang, Hao
    2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024, 2024,
  • [42] Privacy-Preserving Federated Learning in Fog Computing
    Zhou, Chunyi
    Fu, Anmin
    Yu, Shui
    Yang, Wei
    Wang, Huaqun
    Zhang, Yuqing
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (11): : 10782 - 10793
  • [43] Contribution Measurement in Privacy-Preserving Federated Learning
    Hsu, Ruei-hau
    Yu, Yi-an
    Su, Hsuan-cheng
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2024, 40 (06) : 1173 - 1196
  • [44] VPPFL: A verifiable privacy-preserving federated learning scheme against poisoning attacks
    Huang, Yuxian
    Yang, Geng
    Zhou, Hao
    Dai, Hua
    Yuan, Dong
    Yu, Shui
    COMPUTERS & SECURITY, 2024, 136
  • [45] PPFLHE: A privacy-preserving federated learning scheme with homomorphic encryption for healthcare data
    Wang, Bo
    Li, Hongtao
    Guo, Yina
    Wang, Jie
    APPLIED SOFT COMPUTING, 2023, 146
  • [46] A Federated Learning Based Privacy-Preserving Data Sharing Scheme for Internet of Vehicles
    Wang, Yangpeng
    Xiong, Ling
    Niu, Xianhua
    Wang, Yunxiang
    Liang, Dexin
    FRONTIERS IN CYBER SECURITY, FCS 2022, 2022, 1726 : 18 - 33
  • [47] AN EXPLORATION OF FEDERATED LEARNING FOR PRIVACY-PRESERVING MACHINE LEARNING
    Kumar, K. Kiran
    Rao, Thalakola Syamsundara
    Vullam, Nagagopiraju
    Vellela, Sai Srinivas
    Jyosthna, B.
    Farjana, Shaik
    Javvadi, Sravanthi
    2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024, 2024,
  • [48] ISPPFL: An incentive scheme based privacy-preserving federated learning for avatar in metaverse
    Bai, Yang
    Xing, Gaojie
    Wu, Hongyan
    Rao, Zhihong
    Peng, Chengzong
    Rao, Yutang
    Yang, Wentao
    Ma, Chuan
    Li, Jiani
    Zhou, Yimin
    COMPUTER NETWORKS, 2024, 251
  • [49] Privacy-Preserving Robust Federated Learning with Distributed Differential Privacy
    Wang, Fayao
    He, Yuanyuan
    Guo, Yunchuan
    Li, Peizhi
    Wei, Xinyu
    2022 IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, 2022, : 598 - 605
  • [50] A Personalized Privacy Preserving Mechanism for Crowdsourced Federated Learning
    Xu, Yin
    Xiao, Mingjun
    Wu, Jie
    Tan, Haisheng
    Gao, Guoju
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (02) : 1568 - 1585