Explosive spreading on complex networks: The role of synergy

被引:36
作者
Liu, Quan-Hui [1 ,2 ]
Wang, Wei [1 ,2 ]
Tang, Ming [1 ,2 ]
Zhou, Tao [1 ,2 ]
Lai, Ying-Cheng [3 ]
机构
[1] Univ Elect Sci & Technol China, Web Sci Ctr, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Big Data Res Ctr, Chengdu 611731, Peoples R China
[3] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
基金
中国国家自然科学基金;
关键词
EPIDEMIC PROCESSES; MODEL; CONTAGION; DYNAMICS;
D O I
10.1103/PhysRevE.95.042320
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In spite of the vast literature on spreading dynamics on complex networks, the role of local synergy, i.e., the interaction of elements that when combined produce a total effect greater than the sum of the individual elements, has been studied but only for irreversible spreading dynamics. Reversible spreading dynamics are ubiquitous but their interplay with synergy has remained unknown. To fill this knowledge gap, we articulate a model to incorporate local synergistic effect into the classical susceptible-infected-susceptible process, in which the probability for a susceptible node to become infected through an infected neighbor is enhanced when the neighborhood of the latter contains a number of infected nodes. We derive master equations incorporating the synergistic effect, with predictions that agree well with the numerical results. A striking finding is that when a parameter characterizing the strength of the synergy reinforcement effect is above a critical value, the steady-state density of the infected nodes versus the basic transmission rate exhibits an explosively increasing behavior and a hysteresis loop emerges. In fact, increasing the synergy strength can promote the spreading and reduce the invasion and persistence thresholds of the hysteresis loop. A physical understanding of the synergy promoting explosive spreading and the associated hysteresis behavior can be obtained through a mean-field analysis.
引用
收藏
页数:10
相关论文
共 71 条
[1]  
[Anonymous], 2008, Dynamical Processes on Complex Networks
[2]   Steady-state dynamics of the forest fire model on complex networks [J].
Bancal, J. -D. ;
Pastor-Satorras, R. .
EUROPEAN PHYSICAL JOURNAL B, 2010, 76 (01) :109-121
[3]   Modeling Temporal Networks Using Random Itineraries [J].
Barrat, Alain ;
Fernandez, Bastien ;
Lin, Kevin K. ;
Young, Lai-Sang .
PHYSICAL REVIEW LETTERS, 2013, 110 (15)
[4]   Velocity and hierarchical spread of epidemic outbreaks in scale-free networks -: art. no. 178701 [J].
Barthélemy, M ;
Barrat, A ;
Pastor-Satorras, R ;
Vespignani, A .
PHYSICAL REVIEW LETTERS, 2004, 92 (17) :178701-1
[5]   Bootstrap percolation on complex networks [J].
Baxter, G. J. ;
Dorogovtsev, S. N. ;
Goltsev, A. V. ;
Mendes, J. F. F. .
PHYSICAL REVIEW E, 2010, 82 (01)
[6]   The structure and dynamics of multilayer networks [J].
Boccaletti, S. ;
Bianconi, G. ;
Criado, R. ;
del Genio, C. I. ;
Gomez-Gardenes, J. ;
Romance, M. ;
Sendina-Nadal, I. ;
Wang, Z. ;
Zanin, M. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 544 (01) :1-122
[7]   Nature of the Epidemic Threshold for the Susceptible-Infected-Susceptible Dynamics in Networks [J].
Boguna, Marian ;
Castellano, Claudio ;
Pastor-Satorras, Romualdo .
PHYSICAL REVIEW LETTERS, 2013, 111 (06)
[8]  
Borgatti SP, 1999, SOC NETWORKS, V21, P375
[9]   The Hidden Geometry of Complex, Network-Driven Contagion Phenomena [J].
Brockmann, Dirk ;
Helbing, Dirk .
SCIENCE, 2013, 342 (6164) :1337-1342
[10]   Effects of local and global network connectivity on synergistic epidemics [J].
Broder-Rodgers, David ;
Perez-Reche, Francisco J. ;
Taraskin, Sergei N. .
PHYSICAL REVIEW E, 2015, 92 (06)