Quantum automorphism groups of finite graphs

被引:77
作者
Bichon, J [1 ]
机构
[1] Univ Montpellier 2, Dept Math Sci, F-34095 Montpellier, France
关键词
D O I
10.1090/S0002-9939-02-06798-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A quantum analogue of the automorphism group of a finite graph is introduced. These are quantum subgroups of the quantum permutation groups defined by Wang. The quantum automorphism group is a stronger invariant for finite graphs than the usual automorphism group. We get a quantum dihedral group D-4.
引用
收藏
页码:665 / 673
页数:9
相关论文
共 11 条
[1]  
[Anonymous], 1988, ROCK ART RES
[2]   Symmetries of a generic coaction [J].
Banica, T .
MATHEMATISCHE ANNALEN, 1999, 314 (04) :763-780
[3]  
BANICA T, OA9806054
[4]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[5]   CQG ALGEBRAS - A DIRECT ALGEBRAIC APPROACH TO COMPACT QUANTUM GROUPS [J].
DIJKHUIZEN, MS ;
KOORNWINDER, TH .
LETTERS IN MATHEMATICAL PHYSICS, 1994, 32 (04) :315-330
[6]   THE HAAR MEASURE ON A COMPACT QUANTUM GROUP [J].
VANDAELE, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (10) :3125-3128
[7]   FREE-PRODUCTS OF COMPACT QUANTUM GROUPS [J].
WANG, SZ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 167 (03) :671-692
[8]   Quantum symmetry groups of finite spaces [J].
Wang, SZ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 195 (01) :195-211
[9]   COMPACT MATRIX PSEUDOGROUPS [J].
WORONOWICZ, SL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 111 (04) :613-665
[10]   TANNAKA-KREIN DUALITY FOR COMPACT MATRIX PSEUDOGROUPS - TWISTED SU(N) GROUPS [J].
WORONOWICZ, SL .
INVENTIONES MATHEMATICAE, 1988, 93 (01) :35-76