Upper metric mean dimensions with potential on subsets

被引:11
|
作者
Cheng, Dandan [1 ]
Li, Zhiming [1 ]
Selmi, Bilel [2 ]
机构
[1] Northwest Univ, Sch Math, Xian 710127, Peoples R China
[2] Univ Monastir, Fac Sci Monastir, Dept Math, Anal Probabil & Fractals Lab LR18ES17, Monastir 5019, Tunisia
关键词
weighted upper mean dimension; variational principle; inverse variational principle;
D O I
10.1088/1361-6544/abcd08
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the notion of upper metric mean dimension with potential on any subset (not necessarily compact or invariant) via Caratheodory-Pesin structures. We discuss several possible versions of upper measure-theoretic mean dimensions with potential and find conditions to make these notions coincide. In particular, we present a corresponding variational principle and an inverse variational principle.
引用
收藏
页码:852 / 867
页数:16
相关论文
共 50 条
  • [31] Relative dimensions of subsets of topological products
    Kozlov, K.L.
    Vestnik Moskovskogo Universiteta. Ser. 1 Matematika Mekhanika, 2002, (01): : 21 - 26
  • [33] Mean Distance on Metric Graphs
    Baptista, Luis N.
    Kennedy, James B.
    Mugnolo, Delio
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (05)
  • [34] Geometric Mean Metric Learning
    Zadeh, Pourya Habib
    Hosseini, Reshad
    Sra, Suvrit
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [35] Mean Distance on Metric Graphs
    Luís N. Baptista
    James B. Kennedy
    Delio Mugnolo
    The Journal of Geometric Analysis, 2024, 34
  • [36] RECURSIVELY COUNTABLE SUBSETS OF RECURSIVE METRIC SPACES
    SHAPIRO, NZ
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1969, 17 (10): : 603 - &
  • [37] On the box dimension of subsets of a metric compact space
    Ivanov, Aleksandr V.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2023, (83): : 24 - 30
  • [38] PROJECTIVE SUBSETS OF SEPARABLE METRIC-SPACES
    MILLER, AW
    ANNALS OF PURE AND APPLIED LOGIC, 1990, 50 (01) : 53 - 69
  • [39] The omega limit sets of subsets in a metric space
    Ding, CM
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2005, 55 (01) : 87 - 96
  • [40] Tight span of subsets of the plane with the maximum metric
    Kilic, Mehmet
    Kocak, Sahin
    ADVANCES IN MATHEMATICS, 2016, 301 : 693 - 710