Upper metric mean dimensions with potential on subsets

被引:11
|
作者
Cheng, Dandan [1 ]
Li, Zhiming [1 ]
Selmi, Bilel [2 ]
机构
[1] Northwest Univ, Sch Math, Xian 710127, Peoples R China
[2] Univ Monastir, Fac Sci Monastir, Dept Math, Anal Probabil & Fractals Lab LR18ES17, Monastir 5019, Tunisia
关键词
weighted upper mean dimension; variational principle; inverse variational principle;
D O I
10.1088/1361-6544/abcd08
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the notion of upper metric mean dimension with potential on any subset (not necessarily compact or invariant) via Caratheodory-Pesin structures. We discuss several possible versions of upper measure-theoretic mean dimensions with potential and find conditions to make these notions coincide. In particular, we present a corresponding variational principle and an inverse variational principle.
引用
收藏
页码:852 / 867
页数:16
相关论文
共 50 条
  • [21] RIGIDITY OF SUBSETS IN METRIC SPACES
    JANOS, L
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A343 - A344
  • [22] Metric dimensions of metric spaces over integers
    Lei, Yiming
    QUAESTIONES MATHEMATICAE, 2021, 44 (02) : 187 - 198
  • [23] Undistorted fillings in subsets of metric spaces
    Basso, Giuliano
    Wenger, Stefan
    Young, Robert
    ADVANCES IN MATHEMATICS, 2023, 423
  • [24] SUBSETS OF INFINITE DIMENSIONAL METRIC SPACES
    GOODEY, PR
    ILLINOIS JOURNAL OF MATHEMATICS, 1974, 18 (03) : 436 - 443
  • [25] Metric Dimensions of Metric Spaces over Vector Groups
    Lei, Yiming
    Wang, Zhongrui
    Dai, Bing
    MATHEMATICS, 2025, 13 (03)
  • [26] On {l}-Metric Dimensions in Graphs
    Hakanen, Anni
    Laihonen, Tero
    FUNDAMENTA INFORMATICAE, 2018, 162 (2-3) : 143 - 160
  • [27] Metric Dimensions of Bicyclic Graphs
    Khan, Asad
    Haidar, Ghulam
    Abbas, Naeem
    Khan, Murad Ul Islam
    Niazi, Azmat Ullah Khan
    Khan, Asad Ul Islam
    MATHEMATICS, 2023, 11 (04)
  • [28] Nonequality of dimensions for metric groups
    Sipacheva, Ol'ga V.
    TOPOLOGY AND ITS APPLICATIONS, 2008, 155 (17-18) : 2063 - 2083
  • [30] KERR METRIC IN 8 DIMENSIONS
    CHAKRABARTI, A
    PHYSICS LETTERS B, 1986, 172 (02) : 175 - 179