Upper metric mean dimensions with potential on subsets

被引:11
|
作者
Cheng, Dandan [1 ]
Li, Zhiming [1 ]
Selmi, Bilel [2 ]
机构
[1] Northwest Univ, Sch Math, Xian 710127, Peoples R China
[2] Univ Monastir, Fac Sci Monastir, Dept Math, Anal Probabil & Fractals Lab LR18ES17, Monastir 5019, Tunisia
关键词
weighted upper mean dimension; variational principle; inverse variational principle;
D O I
10.1088/1361-6544/abcd08
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the notion of upper metric mean dimension with potential on any subset (not necessarily compact or invariant) via Caratheodory-Pesin structures. We discuss several possible versions of upper measure-theoretic mean dimensions with potential and find conditions to make these notions coincide. In particular, we present a corresponding variational principle and an inverse variational principle.
引用
收藏
页码:852 / 867
页数:16
相关论文
共 50 条
  • [1] Upper Metric Mean Dimensions with Potential
    Hu Chen
    Dandan Cheng
    Zhiming Li
    Results in Mathematics, 2022, 77
  • [2] Upper Metric Mean Dimensions with Potential
    Chen, Hu
    Cheng, Dandan
    Li, Zhiming
    RESULTS IN MATHEMATICS, 2022, 77 (01)
  • [3] Upper metric mean dimensions for impulsive semi-flows
    Cheng, Dandan
    Li, Zhiming
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 311 : 81 - 97
  • [4] Upper metric mean dimension with potential for amenable group actions
    Chen, Hu
    Li, Zhiming
    STUDIA MATHEMATICA, 2025, 280 (03) : 269 - 304
  • [5] Bowen's equations for upper metric mean dimension with potential
    Yang, Rui
    Chen, Ercai
    Zhou, Xiaoyao
    NONLINEARITY, 2022, 35 (09) : 4905 - 4938
  • [6] Amenable upper mean dimensions
    Zhiming Li
    Analysis and Mathematical Physics, 2021, 11
  • [7] Amenable upper mean dimensions
    Li, Zhiming
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (03)
  • [8] On Variational Principles of Metric Mean Dimension on Subsets in Feldman–Katok Metric
    Kun Mei GAO
    Rui Feng ZHANG
    Acta Mathematica Sinica,English Series, 2024, (10) : 2519 - 2536
  • [9] Variational principles for amenable metric mean dimensions
    Chen, Ercai
    Dou, Dou
    Zheng, Dongmei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 319 : 41 - 79
  • [10] On Variational Principles of Metric Mean Dimension on Subsets in Feldman-Katok Metric
    Gao, Kun Mei
    Zhang, Rui Feng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (10) : 2519 - 2536