Error Estimates for the Cardinal Spline Interpolation

被引:0
作者
Vainikko, Gennadi [1 ]
机构
[1] Univ Tartu, Inst Appl Math, EE-50409 Tartu, Estonia
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2009年 / 28卷 / 02期
关键词
Splines; interpolation; error estimates; best constants;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the Sobolev class W(per)(m,infinity)(R) of 1-periodic functions, an unimprovable error estimate for the spline interpolants of order m on the uniform grid is known. In the present paper, this error estimate is extended to the Sobolev class V(m,infinity)(R) of (nonperiodic) functions on R having bounded mth derivative. Some further error estimates are established including the error estimates for derivatives of the spline interpolant.
引用
收藏
页码:205 / 222
页数:18
相关论文
共 11 条
  • [1] Boor C.D., 2001, A Practical Guide to Splines
  • [2] KORNEYCHUK NP, 1984, SPLINES APPROXIMATIO
  • [3] Quasi-interpolation by splines on the uniform knot sets
    Leetma, E.
    Vainikko, G.
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2007, 12 (01) : 107 - 120
  • [4] Schoenberg I. J., 1972, Journal of Approximation Theory, V6, P404, DOI 10.1016/0021-9045(72)90048-2
  • [5] Schoenberg I.J., 1973, Cardinal Spline Interpolation
  • [6] Schoenberg I. J., 1969, J APPROXIMATION THEO, V2, P167, DOI 10.1016/0021-9045(69)90040-9
  • [7] Schumaker L.L., 1993, Spline Functions: Basic Theory
  • [8] Stechkin S, 1976, SPLINES NUMERICAL MA
  • [9] VAINIKKO G, 2007, WSEAS T MATH, V6, P523
  • [10] Zavyalov Y., 1980, METHODS SPLINE FUNCT