Modeling and design of V-shaped piezoelectric vibration energy harvester with stopper for low-frequency broadband and shock excitation

被引:34
|
作者
Jiang, Weile [1 ,2 ,3 ]
Wang, Lu [4 ,5 ]
Zhao, Libo [4 ,5 ]
Luo, Guoxi [4 ,5 ]
Yang, Ping [4 ,5 ]
Ning, Shaobo [2 ]
Lu, Dejiang [4 ,5 ]
Lin, Qijing [4 ,5 ]
机构
[1] Xi An Jiao Tong Univ, Sch Humanities & Social Sci, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Inst Heritage Sites & Hist Architecture Conservat, Xian 710049, Peoples R China
[3] Xian Univ Architecture & Technol, Sch Architecture, Xian 710055, Peoples R China
[4] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Int Joint Lab Micro Nano Mfg & Measurement Techno, Xian 710049, Peoples R China
[5] Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
V-shaped beam; Energy harvesting; PZT bimorph; Broadband low-frequency; Biomechanical shock; HIGH-POWER; OUTPUT; BEAM;
D O I
10.1016/j.sna.2020.112458
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Broadband low-frequency vibration and shock energies are ubiquitous such as biomechanical motion, which can be harvested to power wearable electronics. This paper proposes a compact design of V-shaped piezoelectric vibration energy harvester (V-PVEH) with impact stopper. To demonstrate V-PVEH having high power density, Euler beam model is proposed for qualitative comparison between V-PVEH and cantilevered piezoelectric vibration energy harvester (C-PVEH). FEA model in COMSOL for V-PVEH structure design is proposed especially for the stress check. Modal analysis, two bimorphs connection style, tip mass thickness, and acceleration amplitude are discussed in the experimental vibration validation. A peak voltage of 11.5 V at a low resonant frequency of 12 Hz and a maximum power of 0.442 mW are shown in experiments under the excitation of 0.1 g. A lumped parameters model with nonlinearity analysis for impact induced broadband and shock input is discussed comprehensively. The stopper design in V-PVEH can not only limit the vibration amplitude and prevent overload, but also form broadband of 8-15 Hz and generate large voltage output of 5-19 V when impact occurs at an acceleration of 0.4 g. Except for resonating excitation, biomechanical shock energy harvesting with ultra-low frequency of 1 Hz is testified for wearable V-PVEH to charge a 10 mu F capacitor to 10 V in 5 s by stamping feet. Above all, V-PVEH with stopper is believed to show good performance in broadband low-frequency vibration and biomechanical shock energy harvesting. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Design, modeling and experimental investigation of a magnetically modulated rotational energy harvester for low frequency and irregular vibration
    LinChuan Zhao
    HongXiang Zou
    QiuHua Gao
    Ge Yan
    ZhiYuan Wu
    FengRui Liu
    KeXiang Wei
    Bin Yang
    WenMing Zhang
    Science China Technological Sciences, 2020, 63 : 2051 - 2062
  • [32] DESIGN, MODELING, AND PERFORMANCE MEASUREMENTS OF A BROADBAND VIBRATION ENERGY HARVESTER USING A MAGNETOELECTRIC TRANSDUCER
    Yang, Jin
    Wen, Yumei
    Li, Ping
    Dai, Xianzhi
    INSTRUMENTATION SCIENCE & TECHNOLOGY, 2011, 39 (03) : 312 - 323
  • [33] Design, modeling and experimental investigation of a magnetically modulated rotational energy harvester for low frequency and irregular vibration
    Zhao, LinChuan
    Zou, HongXiang
    Gao, QiuHua
    Yan, Ge
    Wu, ZhiYuan
    Liu, FengRui
    Wei, KeXiang
    Yang, Bin
    Zhang, WenMing
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (10) : 2051 - 2062
  • [34] Improved energy harvesting from low-frequency small vibrations through a monostable piezoelectric energy harvester
    Fan, Kangqi
    Tan, Qinxue
    Liu, Haiyan
    Zhang, Yiwei
    Cai, Meiling
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 117 : 594 - 608
  • [35] An enhanced tunable rotational energy harvester with variable stiffness system for low-frequency vibration
    Jang, Seon-Jun
    Kim, In-Ho
    Park, Kyoungwoo
    Jung, Hyung-Jo
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2016, 230 (05) : 732 - 736
  • [36] A 2-degree-of-freedom cubic nonlinear piezoelectric harvester intended for practical low-frequency vibration
    Wu, Yipeng
    Ji, Hongli
    Qiu, Jinhao
    Han, Lei
    SENSORS AND ACTUATORS A-PHYSICAL, 2017, 264 : 1 - 10
  • [37] Research on Low-Frequency Multi-Directional Piezoelectric Energy Harvester with Combined Cantilever Beam
    Ren, Qingying
    Liu, Yuxuan
    Wang, Debo
    CHINESE JOURNAL OF ELECTRONICS, 2025, 34 (01) : 156 - 164
  • [38] DESIGN OF A LOW-FREQUENCY VIBRATION ENERGY HARVESTER BASED ON MOTION-SYNCHRONIZED MULTI-LAYER ELECTROSTATIC GENERATOR
    Cao, Zeyuan
    Lee, Seng-Hong
    Teng, Junchi
    Ye, Xiongying
    2023 22ND INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS, POWERMEMS 2023, 2023, : 114 - 117
  • [39] Design and Modeling of Micro-Scale Piezoelectric Vibration Energy Harvester for Charging Pacemaker Battery
    Mirghafari, Mehdi
    Naserifar, Naser
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2025, 26 (04) : 947 - 959
  • [40] An omnidirectional low-frequency wave vibration energy harvester with complementary advantages of pendulum and gyroscope structures
    Shi, Ge
    Sun, Qichao
    Xia, Yinshui
    Jia, Shengyao
    Pan, Jiaheng
    Li, Qing
    Wang, Xiudeng
    Xia, Huakang
    Wang, Binrui
    Sun, Yanwei
    ENERGY, 2024, 305