Magnetic optimization in a multicellular magnetotactic organism

被引:44
作者
Winklhofer, Michael
Abracado, Leida G.
Davila, Alfonso F.
Keim, Carolina N.
de Barros, Henrique G. P. Lins
机构
[1] Univ Munich, Dept Earth & Environm Sci, Munich, Germany
[2] Univ Fed Rio de Janeiro, Inst Microbiol Prof Paulo de Goes, Rio De Janeiro, Brazil
[3] CNPq, Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil
关键词
D O I
10.1529/biophysj.106.093823
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Unicellular magnetotactic prokaryotes, which typically carry a natural remanent magnetic moment equal to the saturation magnetic moment, are the prime example of magnetically optimized organisms. We here report magnetic measurements on a multicellular magnetotactic prokaryote (MMP) consisting of 17 undifferentiated cells (mean from 148 MMPs) with chains of ferrimagnetic particles in each cell. To test if the chain polarities of each cell contribute coherently to the total magnetic moment of the MMP, we used a highly sensitive magnetization measurement technique (1 fAm(2)) that enabled us to determine the degree of magnetic optimization (DMO) of individual MMPs in vivo. We obtained DMO values consistently above 80%. Numerical modeling shows that the probability of reaching a DMO > 80% would be as low as 0.017 for 17 randomly oriented magnetic dipoles. We simulated different scenarios to test whether high DMOs are attainable by aggregation or self-organization of individual magnetic cells. None of the scenarios investigated is likely to yield consistently high DMOs in each generation of MMPs. The observed high DMO values require strong Darwinian selection and a sophisticated reproduction mechanism. We suggest a multicellular life cycle as the most plausible scenario for transmitting the high DMO from one generation to the next.
引用
收藏
页码:661 / 670
页数:10
相关论文
共 35 条
[1]   An alternative method for the estimation of the magnetic moment of non-spherical magnetotactic bacteria [J].
Bahaj, AS ;
James, PAB ;
Moeschler, FD .
IEEE TRANSACTIONS ON MAGNETICS, 1996, 32 (05) :5133-5135
[2]   Magnetosome formation in prokaryotes [J].
Bazylinski, DA ;
Frankel, RB .
NATURE REVIEWS MICROBIOLOGY, 2004, 2 (03) :217-230
[3]   MAGNETOTACTIC BACTERIA [J].
BLAKEMORE, R .
SCIENCE, 1975, 190 (4212) :377-379
[4]   ZONED MIGRATION OF MAGNETOTACTIC BACTERIA [J].
CARLILE, MJ ;
DUDENEY, AWL ;
HEBENSTREIT, BK ;
HEEREMA, RH .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1987, 67 (03) :291-294
[5]   Magnetic pulse affects a putative magnetoreceptor mechanism [J].
Davila, AF ;
Winklhofer, M ;
Shcherbakov, VP ;
Petersen, N .
BIOPHYSICAL JOURNAL, 2005, 89 (01) :56-63
[6]   Magnetic properties of hydrothermally synthesized greigite (Fe3S4) .1. Rock magnetic parameters at room temperature [J].
Dekkers, MJ ;
Schoonen, MAA .
GEOPHYSICAL JOURNAL INTERNATIONAL, 1996, 126 (02) :360-+
[7]  
ESQUIVEL D M S, 1986, Journal of Experimental Biology, V121, P153
[8]  
FARINA M, 1983, BIOL CELL, V48, P85
[9]   MAGNETIC IRON-SULFUR CRYSTALS FROM A MAGNETOTACTIC MICROORGANISM [J].
FARINA, M ;
ESQUIVEL, DMS ;
DEBARROS, HGPL .
NATURE, 1990, 343 (6255) :256-258
[10]  
FRANKEL RB, 1984, ANNU REV BIOPHYS BIO, V13, P85