Feature Extraction of Epilepsy EEG using Discrete Wavelet Transform

被引:0
作者
Hamad, Asmaa [1 ]
Houssein, Essam H. [1 ]
Hassanien, Aboul Ella [2 ]
Fahmy, Aly A. [2 ]
机构
[1] Minia Univ, Fac Comp & Informat, Al Minya, Egypt
[2] Cairo Univ, Fac Comp & Informat, Giza, Egypt
来源
ICENCO 2016 - 2016 12TH INTERNATIONAL COMPUTER ENGINEERING CONFERENCE (ICENCO) - BOUNDLESS SMART SOCIETIES | 2016年
关键词
Electroencephalogram (EEG); Epilepsy; Discrete Wavelet Transform (DWT); Feature Extraction; SEIZURE DETECTION; NEURAL-NETWORK; ICA;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Epilepsy is one of the most common a chronic neurological disorders of the brain that affect millions of the world's populations. It is characterized by recurrent seizures, which are physical reactions to sudden, usually brief, excessive electrical discharges in a group of brain cells. Hence, seizure identification has great importance in clinical therapy of epileptic patients. Electroencephalogram (EEG) is most commonly used in epilepsy detection since it includes precious physiological information of the brain. However, it could be a challenge to detect the subtle but critical changes included in EEG signals. Feature extraction of EEG signals is core trouble on EEG-based brain mapping analysis. This paper will extract ten features from EEG signal based on discrete wavelet transform (DWT) for epilepsy detection. These numerous features will help the classifiers to achieve a good accuracy when utilize to classify EEG signal to detect epilepsy. Subsequently, the results have illustrated that DWT has been adopted to extract various features i.e., Entropy, Min, Max, Mean, Median, Standard deviation, Variance, Skewness, Energy and Relative Wave Energy (RWE).
引用
收藏
页码:190 / 195
页数:6
相关论文
共 21 条
[1]   Application of entropies for automated diagnosis of epilepsy using EEG signals: A review [J].
Acharya, U. Rajendra ;
Fujita, H. ;
Sudarshan, Vidya K. ;
Bhat, Shreya ;
Koh, Joel E. W. .
KNOWLEDGE-BASED SYSTEMS, 2015, 88 :85-96
[2]   A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy [J].
Adeli, Hojjat ;
Ghosh-Dastidar, Samanwoy ;
Dadmehr, Nahid .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (02) :205-211
[3]   A combined wavelet and neural network based model for classifying depth of anaesthesia [J].
Benzy, V. K. ;
Jasmin, E. A. .
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES, ICICT 2014, 2015, 46 :1610-1617
[4]   Epileptic seizure identification from electroencephalography signal using DE-RBFNs ensemble [J].
Dehuri, Satchidanada ;
Jagadev, Alok Kumar ;
Cho, Sung-Bae .
4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SYSTEMS-BIOLOGY AND BIOINFORMATICS (CSBIO2013), 2013, 23 :84-95
[5]   Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis [J].
Faust, Oliver ;
Acharya, U. Rajendra ;
Adeli, Hojjat ;
Adeli, Amir .
SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2015, 26 :56-64
[6]   Automatic feature extraction using genetic programming: An application to epileptic EEG classification [J].
Guo, Ling ;
Rivero, Daniel ;
Dorado, Julian ;
Munteanu, Cristian R. ;
Pazos, Alejandro .
EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (08) :10425-10436
[7]   Detection of seizures in EEG using subband nonlinear parameters and genetic algorithm [J].
Hsu, Kai-Cheng ;
Yu, Sung-Nien .
COMPUTERS IN BIOLOGY AND MEDICINE, 2010, 40 (10) :823-830
[8]   A systematic review of clinical decision rules for epilepsy [J].
Josephson, Colin B. ;
Sandy, Sherry ;
Jette, Nathalie ;
Sajobi, Tolulope T. ;
Marshall, Deborah ;
Wiebe, Samuel .
EPILEPSY & BEHAVIOR, 2016, 57 :69-76
[9]  
Kalaivani M., 2014, IJCA P INT C SIM COM
[10]   Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network [J].
Kumar, Yatindra ;
Dewal, M. L. ;
Anand, R. S. .
SIGNAL IMAGE AND VIDEO PROCESSING, 2014, 8 (07) :1323-1334