TWO-DEGREE-OF-FREEDOM GENERALIZED PREDICTIVE CONTROL FOR INTEGRAL COMPENSATION IN A MULTIRATE SYSTEM

被引:0
作者
Sato, Takao [1 ]
Yanai, Hiroyuki [1 ]
Yanou, Akira [2 ]
Masuda, Shiro [3 ]
机构
[1] Univ Hyogo, Himeji, Hyogo 6712201, Japan
[2] Okayama Univ, Okayama 7008530, Japan
[3] Tokyo Metropolitan Univ, Tokyo 1910065, Japan
来源
INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL | 2009年 / 5卷 / 10B期
关键词
Two-degree-of-freedom system; Multirate system; Generalized Predictive Control; Intersample ripple; Integral compensation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new method for designing a multirate control system, in which a sampling interval of plant output is (in integer multiple of a hold interval of a control input. To employ the effect of integral compensation in the multirate system, two-degree-of-freedom (2DOF) Generalized Predictive Control (GPC) is proposed only when there is a modeling error or disturbance. In this paper, a one-degree-of-freedom (1DOF) multirate GPC without integral compensation is first derived, and next the 1DOF multirate GPC is extended into 2DOF control using integral compensation. Numerical examples demonstrate the effectiveness of the proposed method.
引用
收藏
页码:3287 / 3294
页数:8
相关论文
共 11 条
[1]  
[Anonymous], 1995, OPTIMAL SAMPLED DATA, DOI DOI 10.1007/978-1-4471-3037-6
[2]   MULTIVARIABLE MULTIRATE SAMPLED-DATA SYSTEMS - STATE-SPACE DESCRIPTION, TRANSFER CHARACTERISTICS, AND NYQUIST CRITERION [J].
ARAKI, M ;
YAMAMOTO, K .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1986, 31 (02) :145-154
[3]   GENERALIZED PREDICTIVE CONTROL .1. THE BASIC ALGORITHM [J].
CLARKE, DW ;
MOHTADI, C ;
TUFFS, PS .
AUTOMATICA, 1987, 23 (02) :137-148
[4]  
Ishitobi M., P 15 IFAC WORLD C BA, P327
[5]   MULTIRATE CONSTRAINED ADAPTIVE-CONTROL [J].
LU, WP ;
FISHER, DG ;
SHAH, SL .
INTERNATIONAL JOURNAL OF CONTROL, 1990, 51 (06) :1439-1456
[6]  
Sato Takao, 2008, SICE Journal of Control, Measurement, and System Integration, V1, P329, DOI 10.9746/jcmsi.1.329
[7]   MULTIRATE SELF-TUNING PREDICTIVE CONTROLLER FOR MULTIVARIABLE SYSTEMS [J].
SCATTOLINI, R .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1992, 23 (08) :1347-1359
[8]   Ripple-free conditions for lifted multirate control systems [J].
Tangirala, AK ;
Li, D ;
Patwardhan, RS ;
Shah, SL ;
Chen, T .
AUTOMATICA, 2001, 37 (10) :1637-1645
[9]  
Yanou A., 2005, P SICE ANN C 2005 OK, P1187
[10]  
Yanou A, 2008, INT J INNOV COMPUT I, V4, P3307