Odd periodic window and bifurcations on 2D parameter space of low frequency oscillations

被引:3
作者
da Silva, S. L. [2 ]
Rubinger, R. M. [1 ]
de Oliveira, A. G. [2 ]
Ribeiro, G. M. [2 ]
Viana, E. R. [2 ]
机构
[1] Univ Fed Itajuba, Inst Ciencias, Dept Quim & Fis, BR-37500903 Itajuba, Brazil
[2] Univ Fed Minas Gerais, Dept Fis, Inst Ciencias Exatas, BR-30123970 Belo Horizonte, MG, Brazil
关键词
Chaos; Non-linear dynamics; Parameter space; Low frequency oscillations; Time series analysis; HIGH MAGNETIC-FIELDS; SEMIINSULATING GAAS; SLOW DOMAINS;
D O I
10.1016/j.physd.2009.07.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Low frequency current oscillations have been usually investigated under the influence of the external applied voltage, temperature and illumination. A parallel applied magnetic field has been used in the present work in order to obtain odd periodic windows and bifurcations inside them in a two dimension parameter space for a semi-insulating GaAs sample grown by molecular beam epitaxy. Two kinds of parameter spaces have been used in order to stabilize the odd periodic windows and the bifurcations, namely, the external applied voltage versus the parallel magnetic field and the illumination versus the parallel magnetic field. We report on a successful observation of stable cycles of periodicity 3, 4, 5, 6, 7 and 8 inside a period-3 window. An example of bifurcation route is presented following the sequence from chaos to 4, 3, 6, 3, 5, 7, 5, and back to chaos in the parameter space of voltage versus magnetic field. For this bifurcation route we will show which branch of the cycle is bifurcating and which are coalescing with the control parameters. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1951 / 1956
页数:6
相关论文
共 28 条
  • [1] Periodic window arising in the parameter space of an impact oscillator
    Medeiros, E. S.
    de Souza, S. L. T.
    Medrano-T, R. O.
    Caldas, I. L.
    PHYSICS LETTERS A, 2010, 374 (26) : 2628 - 2635
  • [2] Bifurcations in 2D Spatiotemporal Maps
    Sahari, Mohamed Lamine
    Taha, Abdel-Kaddous
    Randriamihamison, Louis
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (06):
  • [3] Bifurcations in a one-parameter family of Lotka-Volterra 2D transformations
    Gardini, Laura
    Tikjha, Wirot
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 100
  • [4] Parameter Identification of Low Frequency Oscillations by Pade Method
    Betancourt, R. J.
    Contreras, L.
    Gonzalez, J. M.
    Barocio, E.
    Rergis, C. M.
    2016 IEEE PES TRANSMISSION & DISTRIBUTION CONFERENCE AND EXPOSITION-LATIN AMERICA (PES T&D-LA), 2016,
  • [5] Stability and Bifurcations in 2D Spatiotemporal Discrete Systems
    Sahari, Mohamed Lamine
    Taha, Abdel-Kaddous
    Randriamihamison, Louis
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (08):
  • [6] Transformed periodic orbit mechanism of low frequency oscillations in power systems
    Wang, Gang
    Shen, Chen
    Fu, Lijun
    Cui, Zhiyong
    Ye, Zhihao
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2016, 44 (01) : 226 - 239
  • [7] Diffusion transitions in a 2D periodic lattice
    Lazarotto, Matheus J.
    Caldas, Ibere L.
    Elskens, Yves
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 112
  • [8] 2D bifurcations and chaos in nonlinear circuits: a parallel computational approach
    Marszalek, Wieslaw
    Sadecki, Jan
    15TH INTERNATIONAL CONFERENCE ON SYNTHESIS, MODELING, ANALYSIS AND SIMULATION METHODS AND APPLICATIONS TO CIRCUIT DESIGN (SMACD 2018), 2018, : 297 - 300
  • [9] Self-similar structures in a 2D parameter-space of an inductorless Chua's circuit
    Albuquerque, Holokx A.
    Rubinger, Rero M.
    Rech, Paulo C.
    PHYSICS LETTERS A, 2008, 372 (27-28) : 4793 - 4798
  • [10] Quasi-periodic regime of self-modulation oscillations with a periodic low-frequency envelope in a ring chip laser
    Aulova, T. V.
    Kravtsov, N. V.
    Lariontsev, E. G.
    Chekina, S. N.
    QUANTUM ELECTRONICS, 2011, 41 (01) : 13 - 16