Efficient Computation of Order Bases

被引:0
|
作者
Zhou, Wei [1 ]
Labahn, George [1 ]
机构
[1] Univ Waterloo, Cheriton Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
关键词
Order basis; Complexity; MATRICES;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we give an efficient algorithm for computation of order basis of a matrix of power series. For a problem with an m x n input matrix over a field K, m <= n, and order sigma, Our algorithm uses O(similar to)(MM(n, [m sigma/n])) subset of O(similar to) (n(omega) [m sigma/n]) field operations in K, where the soft-O notation O(similar to) is Big-O with log factors omitted and MM (n, d) denotes the cost of multiplying two polynomial matrices with dimension n and degree d. The algorithm extends earlier work of Storjohann, whose method can be used to find a subset of an order basis that is within a specified degree bound delta using O(similar to)(MM (n, delta)) field operations for delta >= [m sigma/n].
引用
收藏
页码:375 / 382
页数:8
相关论文
共 50 条
  • [1] Efficient algorithms for order basis computation
    Zhou, Wei
    Labahn, George
    JOURNAL OF SYMBOLIC COMPUTATION, 2012, 47 (07) : 793 - 819
  • [2] Efficient Grobner bases computation over principal ideal rings
    Eder, Christian
    Hofmann, Tommy
    JOURNAL OF SYMBOLIC COMPUTATION, 2021, 103 : 1 - 13
  • [3] On efficient computation of multidimensional oscillatory integrals with local Fourier bases
    Averbuch, A
    Braverman, E
    Israeli, M
    Coifman, R
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (05) : 3491 - 3502
  • [4] Efficient computation of analytic bases in Evans function analysis of large systems
    Humpherys, Jeffrey
    Sandstede, Bjorn
    Zumbrun, Kevin
    NUMERISCHE MATHEMATIK, 2006, 103 (04) : 631 - 642
  • [5] Efficient Computation of Analytic Bases in Evans Function Analysis of Large Systems
    Jeffrey Humpherys
    Björn Sandstede
    Kevin Zumbrun
    Numerische Mathematik, 2006, 103 : 631 - 642
  • [6] EFFICIENT COMPUTATION OF ZERO-DIMENSIONAL GROBNER BASES BY CHANGE OF ORDERING
    FAUGERE, JC
    GIANNI, P
    LAZARD, D
    MORA, T
    JOURNAL OF SYMBOLIC COMPUTATION, 1993, 16 (04) : 329 - 344
  • [7] EFFICIENT COMPUTATION OF HIGHER-ORDER CUMULANT TENSORS
    Domino, Krzysztof
    Gawron, Piotr
    Pawela, Lukasz
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (03): : A1590 - A1610
  • [8] Accurate and efficient computation of high order Zernike moments
    Amayeh, G
    Erol, A
    Bebis, G
    Nicolescu, M
    ADVANCES IN VISUAL COMPUTING, PROCEEDINGS, 2005, 3804 : 462 - 469
  • [9] EFFICIENT COMPUTATION OF LEAST ORDER FOR A GIVEN TRANSFER FUNCTION
    ROSENBROCK, HH
    ELECTRONICS LETTERS, 1967, 3 (09) : 413 - +
  • [10] Computation of integral bases
    Bauch, Jens-Dietrich
    JOURNAL OF NUMBER THEORY, 2016, 165 : 382 - 407