Dimensionality reduction for interactive data visualization via a Geo-Desic approach

被引:0
作者
Salazar-Castro, Jose A. [1 ,2 ]
Pena-Unigarro, Diego [1 ,2 ]
Peluffo-Ordonez, Diego H. [1 ,3 ]
Rosero-Montalvo, Paul D. [1 ,3 ]
Mauricio Dominguez-Limaico, H. [1 ,3 ]
Alvarado-Perez, Juan C. [4 ,5 ]
Theron, Roberto [4 ,5 ]
机构
[1] Univ Narino Pasto, Pasto, Colombia
[2] Univ Nacl Colombia, Manizales, Colombia
[3] Univ Tecn Norte, Ibarra, Ecuador
[4] Corp Univ Autonoma Narino, Pasto, Narino, Colombia
[5] Univ Salamanca, Salamanca, Spain
来源
2016 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI) | 2016年
关键词
dimensionality reduction; data visualization; data information; controllability; interaction; intelligible data; interface;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work presents a dimensionality reduction (DR) framework that enables users to perform either the selection or mixture of DR methods by means of an interactive model, here named Geo-Desic approach. Such a model consists of linear combination of kernel-based representations of DR methods, wherein the corresponding coefficients are related to coordinated latitude and longitude inside of the world map. By incorporating the Geo-Desic approach within an interface, the combination may be made easily and intuitively by users-even non-expert onesfulfilling their criteria and needs, by just picking up points from the map. Experimental results demonstrates the usability and ability of DR methods representation of proposed approach.
引用
收藏
页数:6
相关论文
共 17 条
[1]  
[Anonymous], TELKOMNIKA INDONESIA
[2]  
[Anonymous], 2007, ARTIF INTELL
[3]  
[Anonymous], 2010, Modern multidimensional scaling: theory and applications
[4]   Laplacian eigenmaps for dimensionality reduction and data representation [J].
Belkin, M ;
Niyogi, P .
NEURAL COMPUTATION, 2003, 15 (06) :1373-1396
[5]  
Bertini E., 2009, P ACM SIGKDD WORKSH, P12
[6]  
Ham J., 2004, P 21 INT C MACH LEAR
[7]   Gradient-based learning applied to document recognition [J].
Lecun, Y ;
Bottou, L ;
Bengio, Y ;
Haffner, P .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2278-2324
[8]  
Lee J. A., 2013, NEUROCOMPUTING
[9]  
LICHMAN M., 2013, UCI MACHINE LEARNING
[10]  
Nayar S. K., 1996, COLUMBIA OBJECT IMAG, V62