DIRECT CONSTRUCTION OF A BI-HAMILTONIAN STRUCTURE FOR CUBIC HENON-HEILES SYSTEMS

被引:1
作者
Sottocornola, Nicola [1 ]
机构
[1] Zayed Univ, Dept Math & Stat, Abu Dhabi, U Arab Emirates
关键词
Integrable systems; separation of variables; integration in quadratures; EXPLICIT INTEGRATION;
D O I
10.7546/jgsp-57-2020-99-109
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problem of separating variables in integrable Hamiltonian systems has been extensively studied in the last decades. A recent approach is based on the so called Kowalewski's Conditions used to characterized a Control Matrix M whose eigenvalues give the desired coordinates. In this paper we calculate directly a second compatible Hamiltonian structure for the cubic Henon-Heiles systems and in this way we obtain the separation variables as the eigenvalues of a recursion operator N. Finally we re-obtain the Control Matrix M from N.
引用
收藏
页码:99 / 109
页数:11
相关论文
共 11 条
[1]   Explicit integration of the Henon-Heiles Hamiltonians [J].
Conte, R ;
Musette, M ;
Verhoeven, C .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2005, 12 (Suppl 1) :212-227
[2]   THE HENON-HEILES SYSTEM REVISITED [J].
FORDY, AP .
PHYSICA D, 1991, 52 (2-3) :204-210
[3]   Exact Solutions in the Invariant Manifolds of the Generalized Integrable Henon-Heiles System and Exact Traveling Wave Solutions of Klein-Gordon-Schrodinger Equations [J].
Li, Jibin .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (01)
[4]   The Kowalevski's top and the method of syzygies [J].
Magri, F .
ANNALES DE L INSTITUT FOURIER, 2005, 55 (06) :2147-2159
[5]  
MAGRI F, 1984, GEOMETRICAL CHARACTE
[6]  
Magri F., 2018, KOWALEWSKIS TOP REVI
[7]   SEPARABILITY AND LAX PAIRS FOR HENON-HEILES SYSTEM [J].
RAVOSON, V ;
GAVRILOV, L ;
CABOZ, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (06) :2385-2393
[8]   Separation coordinates in Henon-Heiles systems [J].
Sottocornola, Nicola .
PHYSICS LETTERS A, 2019, 383 (36)
[9]   Explicit integration of a generic Henon-Heiles system with quartic potential [J].
Sottocornola, Nicola .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2017, 24 (03) :346-355
[10]   On bi-hamiltonian structure of some integrable systems on so*(4) [J].
Tsiganov, A. V. .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (02) :171-185