Estimating Endogenous Treatment Effects Using Latent Factor Models with and without Instrumental Variables

被引:3
|
作者
Banerjee, Souvik [1 ]
Basu, Anirban [2 ]
机构
[1] Indian Inst Technol, Dept Humanities & Social Sci, Mumbai 400076, Maharashtra, India
[2] Univ Washington, Sch Pharm, Comparat Hlth Outcomes Policy & Econ CHOICE Inst, Seattle, WA 98195 USA
关键词
treatment effect; latent factor models; instrumental variable; mental illness; disability; LABOR-MARKET OUTCOMES; PSYCHIATRIC-DISORDERS; IDENTIFICATION; DEPRESSION; EMPLOYMENT; ABILITIES; RETURNS; IMPACT;
D O I
10.3390/econometrics9010014
中图分类号
F [经济];
学科分类号
02 ;
摘要
We provide evidence on the least biased ways to identify causal effects in situations where there are multiple outcomes that all depend on the same endogenous regressor and a reasonable but potentially contaminated instrumental variable that is available. Simulations provide suggestive evidence on the complementarity of instrumental variable (IV) and latent factor methods and how this complementarity depends on the number of outcome variables and the degree of contamination in the IV. We apply the causal inference methods to assess the impact of mental illness on work absenteeism and disability, using the National Comorbidity Survey Replication.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Using Instrumental Variables to Measure Causation over Time in Cross-Lagged Panel Models
    Singh, Madhurbain
    Verhulst, Brad
    Vinh, Philip
    Zhou, Yi
    Castro-de-Araujo, Luis F. S.
    Hottenga, Jouke-Jan
    Pool, Rene
    de Geus, Eco J. C.
    Vink, Jacqueline M.
    Boomsma, Dorret I.
    Maes, Hermine H. M.
    Dolan, Conor V.
    Neale, Michael C.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2023, 59 (02) : 342 - 370
  • [42] Composite quantile regression estimation of linear error-in-variable models using instrumental variables
    Yang, Weiming
    Yang, Yiping
    METRIKA, 2020, 83 (01) : 1 - 16
  • [43] Composite quantile regression estimation of linear error-in-variable models using instrumental variables
    Weiming Yang
    Yiping Yang
    Metrika, 2020, 83 : 1 - 16
  • [44] Heterogeneity and Heteroskedasticity in Endogenous Switching Models: Estimating the Effects of Physician Advice on Calorie Consumption
    Joshi, Riju
    Wooldridge, Jeffrey M.
    JOURNAL OF APPLIED ECONOMETRICS, 2025,
  • [45] Personalized QoS Prediction for Web Services using Latent Factor Models
    Yu, Dongjin
    Liu, Yu
    Xu, Yueshen
    Yin, Yuyu
    2014 IEEE INTERNATIONAL CONFERENCE ON SERVICES COMPUTING (SCC 2014), 2014, : 107 - 114
  • [46] Peer effects in consumption in India: An instrumental variables approach using negative idiosyncratic shocks
    Roychowdhury, Punarjit
    WORLD DEVELOPMENT, 2019, 114 : 122 - 137
  • [47] Using instrumental variables to correct for bias in real-world cohort studies of the effects of disease-modifying treatment in MS
    Koch-Henriksen, Nils Iorgen
    Thygesen, Lau Caspar
    Sorensen, Per Soelberg
    Magyari, Melinda
    MULTIPLE SCLEROSIS JOURNAL, 2024, 30 (01) : 113 - 120
  • [48] Estimating dynamic spatial panel data models with endogenous regressors using synthetic instruments
    Bernard Fingleton
    Journal of Geographical Systems, 2023, 25 : 121 - 152
  • [49] Estimating dynamic spatial panel data models with endogenous regressors using synthetic instruments
    Fingleton, Bernard
    JOURNAL OF GEOGRAPHICAL SYSTEMS, 2023, 25 (01) : 121 - 152
  • [50] Educational inequalities in access to fixed prosthodontic treatment in Norway. Causal effects using the introduction of a school reform as an instrumental variable
    Grytten, Jostein
    Skau, Irene
    SOCIAL SCIENCE & MEDICINE, 2020, 260