Estimating Endogenous Treatment Effects Using Latent Factor Models with and without Instrumental Variables

被引:3
|
作者
Banerjee, Souvik [1 ]
Basu, Anirban [2 ]
机构
[1] Indian Inst Technol, Dept Humanities & Social Sci, Mumbai 400076, Maharashtra, India
[2] Univ Washington, Sch Pharm, Comparat Hlth Outcomes Policy & Econ CHOICE Inst, Seattle, WA 98195 USA
关键词
treatment effect; latent factor models; instrumental variable; mental illness; disability; LABOR-MARKET OUTCOMES; PSYCHIATRIC-DISORDERS; IDENTIFICATION; DEPRESSION; EMPLOYMENT; ABILITIES; RETURNS; IMPACT;
D O I
10.3390/econometrics9010014
中图分类号
F [经济];
学科分类号
02 ;
摘要
We provide evidence on the least biased ways to identify causal effects in situations where there are multiple outcomes that all depend on the same endogenous regressor and a reasonable but potentially contaminated instrumental variable that is available. Simulations provide suggestive evidence on the complementarity of instrumental variable (IV) and latent factor methods and how this complementarity depends on the number of outcome variables and the degree of contamination in the IV. We apply the causal inference methods to assess the impact of mental illness on work absenteeism and disability, using the National Comorbidity Survey Replication.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Identifiability of Sparse Causal Effects using Instrumental Variables
    Pfister, Niklas
    Peters, Jonas
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 1613 - 1622
  • [22] Interindividual Differences in Treatment Effects Based on Structural Equation Models with Latent Variables: An EffectLiteR Tutorial
    Mayer, Axel
    Zimmermann, Johannes
    Hoyer, Juergen
    Salzer, Simone
    Wiltink, Joerg
    Leibing, Eric
    Leichsenring, Falk
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2020, 27 (05) : 798 - 816
  • [23] Identification of treatment effects using control functions in models with continuous, endogenous treatment and heterogeneous effects
    Florens, J. P.
    Heckman, J. J.
    Meghir, C.
    Vytlacil, E.
    ECONOMETRICA, 2008, 76 (05) : 1191 - 1206
  • [24] Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality
    Carneiro, Pedro
    Lee, Sokbae
    JOURNAL OF ECONOMETRICS, 2009, 149 (02) : 191 - 208
  • [25] Using Instrumental Variables to Account for Selection Effects in Research on First-Year Programs
    Pike, Gary R.
    Hansen, Michele J.
    Lin, Ching-Hui
    RESEARCH IN HIGHER EDUCATION, 2011, 52 (02) : 194 - 214
  • [26] Instrumental variables estimation of exposure effects on a time-to-event endpoint using structural cumulative survival models
    Martinussen, Torben
    Vansteelandt, Stijn
    Tchetgen, Eric J. Tchetgen
    Zucker, David M.
    BIOMETRICS, 2017, 73 (04) : 1140 - 1149
  • [27] Estimating heterogeneous treatment effects for latent subgroups in observational studies
    Kim, Hang J.
    Lu, Bo
    Nehus, Edward J.
    Kim, Mi-Ok
    STATISTICS IN MEDICINE, 2019, 38 (03) : 339 - 353
  • [28] Opportunities and Challenges in Using Instrumental Variables to Study Causal Effects in Nonrandomized Stress and Trauma Research
    Matthay, Ellicott C.
    Smith, Meghan L.
    Glymour, M. Maria
    White, Justin S.
    Gradus, Jaimie L.
    PSYCHOLOGICAL TRAUMA-THEORY RESEARCH PRACTICE AND POLICY, 2023, 15 (06) : 917 - 929
  • [29] Estimating Treatment Effects in the Presence of Noncompliance and Nonresponse: The Generalized Endogenous Treatment Model
    Esterling, Kevin M.
    Neblo, Michael A.
    Lazer, David M. J.
    POLITICAL ANALYSIS, 2011, 19 (02) : 205 - 226
  • [30] Selection Bias When Estimating Average Treatment Effects Using One-sample Instrumental Variable Analysis
    Hughes, Rachael A.
    Davies, Neil M.
    Smith, George Davey
    Tilling, Kate
    EPIDEMIOLOGY, 2019, 30 (03) : 350 - 357