Estimating Endogenous Treatment Effects Using Latent Factor Models with and without Instrumental Variables

被引:3
|
作者
Banerjee, Souvik [1 ]
Basu, Anirban [2 ]
机构
[1] Indian Inst Technol, Dept Humanities & Social Sci, Mumbai 400076, Maharashtra, India
[2] Univ Washington, Sch Pharm, Comparat Hlth Outcomes Policy & Econ CHOICE Inst, Seattle, WA 98195 USA
关键词
treatment effect; latent factor models; instrumental variable; mental illness; disability; LABOR-MARKET OUTCOMES; PSYCHIATRIC-DISORDERS; IDENTIFICATION; DEPRESSION; EMPLOYMENT; ABILITIES; RETURNS; IMPACT;
D O I
10.3390/econometrics9010014
中图分类号
F [经济];
学科分类号
02 ;
摘要
We provide evidence on the least biased ways to identify causal effects in situations where there are multiple outcomes that all depend on the same endogenous regressor and a reasonable but potentially contaminated instrumental variable that is available. Simulations provide suggestive evidence on the complementarity of instrumental variable (IV) and latent factor methods and how this complementarity depends on the number of outcome variables and the degree of contamination in the IV. We apply the causal inference methods to assess the impact of mental illness on work absenteeism and disability, using the National Comorbidity Survey Replication.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Estimating Peer Effects in Longitudinal Dyadic Data Using Instrumental Variables
    O'Malley, A. James
    Elwert, Felix
    Rosenquist, J. Niels
    Zaslavsky, Alan M.
    Christakis, Nicholas A.
    BIOMETRICS, 2014, 70 (03) : 506 - 515
  • [2] Heterogeneous treatment effects: Instrumental variables without monotonicity?
    Klein, Tobias J.
    JOURNAL OF ECONOMETRICS, 2010, 155 (02) : 99 - 116
  • [3] A consistent moment equations for binary probit models with endogenous variables using instrumental variables
    de Grange, Louis
    Gonzalez, Felipe
    Marechal, Matthieu
    Troncoso, Rodrigo
    JOURNAL OF CHOICE MODELLING, 2024, 53
  • [4] Dummy endogenous treatment effect estimation using high-dimensional instrumental variables
    Zhong, Wei
    Zhou, Wei
    Fan, Qingliang
    Gao, Yang
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (03): : 795 - 819
  • [5] Estimating Treatment Effects and Predicting Recidivism for Community Supervision Using Survival Analysis with Instrumental Variables
    Rhodes, William
    JOURNAL OF QUANTITATIVE CRIMINOLOGY, 2010, 26 (03) : 391 - 413
  • [6] Estimating causal effects with hidden confounding using instrumental variables and environments
    Long, James P.
    Zhu, Hongxu
    Do, Kim-Anh
    Ha, Min Jin
    ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (02): : 2849 - 2879
  • [7] Estimating the causal effect of measured endogenous variables: A tutorial on experimentally randomized instrumental variables
    Sajons, Gwendolin B.
    LEADERSHIP QUARTERLY, 2020, 31 (05)
  • [8] Estimating the marginal willingness to pay function without instrumental variables
    Bishop, Kelly C.
    Timmins, Christopher
    JOURNAL OF URBAN ECONOMICS, 2019, 109 : 66 - 83
  • [9] Estimating Structural Mean Models with Multiple Instrumental Variables Using the Generalised Method of Moments
    Clarke, Paul S.
    Palmer, Tom M.
    Windmeijer, Frank
    STATISTICAL SCIENCE, 2015, 30 (01) : 96 - 117
  • [10] Estimating dose-response effects in psychological treatment trials: the role of instrumental variables
    Maracy, Mohammad
    Dunn, Graham
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2011, 20 (03) : 191 - 215