A Strong Convergence Theorem for Split Null Point Problem and Generalized Mixed Equilibrium Problem in Real Hilbert Spaces

被引:1
作者
Oyewole, Olawale Kazeem [1 ,2 ]
Mewomo, Oluwatosin Temitope [1 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, ZA-4001 Durban, South Africa
[2] DST NRF Ctr Excellence Math & Stat Sci CoE MaSS, ZA-2001 Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
split feasibility problem; null point problem; generalized mixed equilibrium problem; monotone mapping; strong convergence; Hilbert space; VARIATIONAL INEQUALITY; NONEXPANSIVE-MAPPINGS; PROJECTION; ALGORITHM;
D O I
10.3390/axioms10010016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a schematic approximation of solutions of a split null point problem for a finite family of maximal monotone operators in real Hilbert spaces. We propose an iterative algorithm that does not depend on the operator norm which solves the split null point problem and also solves a generalized mixed equilibrium problem. We prove a strong convergence of the proposed algorithm to a common solution of the two problems. We display some numerical examples to illustrate our method. Our result improves some existing results in the literature.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [1] Modified inertial subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems
    Alakoya, T. O.
    Jolaoso, L. O.
    Mewomo, O. T.
    [J]. OPTIMIZATION, 2021, 70 (03) : 545 - 574
  • [2] Alakoya T. O., 2021, ANN U FERRARA SEZ 7, V67, P1, DOI [10.1007/s11565-020-00354-2, DOI 10.1007/S11565-020-00354-2]
  • [3] Alakoya T.O., 2020, Nonlinear Stud., V27, P213
  • [4] [Anonymous], 2006, INVERSE PROBL, DOI DOI 10.1088/0031-9155/51/10/001
  • [5] [Anonymous], 2018, COMPUT APPL MATH, DOI DOI 10.1007/S11075-017-0449-Z
  • [6] [Anonymous], 2020, J OPTIMIZ THEORY APP, DOI DOI 10.1007/S40314-019-1014-2
  • [7] [Anonymous], 1970, J OPTIMIZ THEORY APP, DOI DOI 10.1090/S0002-9947-1970-0282272-5
  • [8] [Anonymous], 2020, REV FR AUTOMAT INFOR, DOI DOI 10.1515/DEMA-2020-0013
  • [9] [Anonymous], 2011, CMS BOOKS MATH, DOI DOI 10.1007/S10957-011-9837-Z
  • [10] [Anonymous], 2019, QUAEST MATH, DOI DOI 10.4995/AGT.2019.10635