Estimation Method for Magnetization Distribution in Permanent Magnet Using Deep Neural Network
被引:2
作者:
Sasaki, Hidenori
论文数: 0引用数: 0
h-index: 0
机构:
Hosei Univ, Dept Elect & Elect Engn, Koganei, Tokyo, JapanHosei Univ, Dept Elect & Elect Engn, Koganei, Tokyo, Japan
Sasaki, Hidenori
[1
]
Takasu, Daichi
论文数: 0引用数: 0
h-index: 0
机构:
Hosei Univ, Dept Elect & Elect Engn, Koganei, Tokyo, JapanHosei Univ, Dept Elect & Elect Engn, Koganei, Tokyo, Japan
Takasu, Daichi
[1
]
Nakamura, Narichika
论文数: 0引用数: 0
h-index: 0
机构:
Hosei Univ, Dept Elect & Elect Engn, Koganei, Tokyo, JapanHosei Univ, Dept Elect & Elect Engn, Koganei, Tokyo, Japan
Nakamura, Narichika
[1
]
Okamoto, Yoshifumi
论文数: 0引用数: 0
h-index: 0
机构:
Hosei Univ, Dept Elect & Elect Engn, Koganei, Tokyo, JapanHosei Univ, Dept Elect & Elect Engn, Koganei, Tokyo, Japan
Okamoto, Yoshifumi
[1
]
机构:
[1] Hosei Univ, Dept Elect & Elect Engn, Koganei, Tokyo, Japan
来源:
TWENTIETH BIENNIAL IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (IEEE CEFC 2022)
|
2022年
关键词:
Biot-Savart low;
Deep Learning;
Magnetization Estimation;
Nd-Fe-B Magnet;
D O I:
10.1109/CEFC55061.2022.9940784
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
A new estimation method for magnetization distribution (MD) in permanent magnets using a deep neural network (DNN) is proposed. It estimates the physical MD from the measured magnetic flux density distribution. The proposed method overcomes problems of indefiniteness and using a new method of constructing training data that models the realistic MD. The DNN trained on the data calculated by the Biot-Savart method can accurately estimate the MD for measured and untrained data.
机构:
Moving Magnet Technol, Res & Dev Dept, F-25000 Besancon, FranceMoving Magnet Technol, Res & Dev Dept, F-25000 Besancon, France
Arbenz, Laure
Chadebec, Olivier
论文数: 0引用数: 0
h-index: 0
机构:
Univ Grenoble Alpes, Grenoble INR, CNRS, G2Elab, F-38000 Grenoble, FranceMoving Magnet Technol, Res & Dev Dept, F-25000 Besancon, France
Chadebec, Olivier
Espanet, Christophe
论文数: 0引用数: 0
h-index: 0
机构:
Moving Magnet Technol, Res & Dev Dept, F-25000 Besancon, FranceMoving Magnet Technol, Res & Dev Dept, F-25000 Besancon, France
Espanet, Christophe
Rtimi, Youness
论文数: 0引用数: 0
h-index: 0
机构:
Moving Magnet Technol, Res & Dev Dept, F-25000 Besancon, France
Univ Grenoble Alpes, Grenoble INR, CNRS, G2Elab, F-38000 Grenoble, FranceMoving Magnet Technol, Res & Dev Dept, F-25000 Besancon, France
Rtimi, Youness
Cauffet, Gilles
论文数: 0引用数: 0
h-index: 0
机构:
Univ Grenoble Alpes, Grenoble INR, CNRS, G2Elab, F-38000 Grenoble, FranceMoving Magnet Technol, Res & Dev Dept, F-25000 Besancon, France
机构:
Moving Magnet Technol, Res & Dev Dept, F-25000 Besancon, FranceMoving Magnet Technol, Res & Dev Dept, F-25000 Besancon, France
Arbenz, Laure
Chadebec, Olivier
论文数: 0引用数: 0
h-index: 0
机构:
Univ Grenoble Alpes, Grenoble INR, CNRS, G2Elab, F-38000 Grenoble, FranceMoving Magnet Technol, Res & Dev Dept, F-25000 Besancon, France
Chadebec, Olivier
Espanet, Christophe
论文数: 0引用数: 0
h-index: 0
机构:
Moving Magnet Technol, Res & Dev Dept, F-25000 Besancon, FranceMoving Magnet Technol, Res & Dev Dept, F-25000 Besancon, France
Espanet, Christophe
Rtimi, Youness
论文数: 0引用数: 0
h-index: 0
机构:
Moving Magnet Technol, Res & Dev Dept, F-25000 Besancon, France
Univ Grenoble Alpes, Grenoble INR, CNRS, G2Elab, F-38000 Grenoble, FranceMoving Magnet Technol, Res & Dev Dept, F-25000 Besancon, France
Rtimi, Youness
Cauffet, Gilles
论文数: 0引用数: 0
h-index: 0
机构:
Univ Grenoble Alpes, Grenoble INR, CNRS, G2Elab, F-38000 Grenoble, FranceMoving Magnet Technol, Res & Dev Dept, F-25000 Besancon, France