Estimation Method for Magnetization Distribution in Permanent Magnet Using Deep Neural Network

被引:2
作者
Sasaki, Hidenori [1 ]
Takasu, Daichi [1 ]
Nakamura, Narichika [1 ]
Okamoto, Yoshifumi [1 ]
机构
[1] Hosei Univ, Dept Elect & Elect Engn, Koganei, Tokyo, Japan
来源
TWENTIETH BIENNIAL IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (IEEE CEFC 2022) | 2022年
关键词
Biot-Savart low; Deep Learning; Magnetization Estimation; Nd-Fe-B Magnet;
D O I
10.1109/CEFC55061.2022.9940784
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new estimation method for magnetization distribution (MD) in permanent magnets using a deep neural network (DNN) is proposed. It estimates the physical MD from the measured magnetic flux density distribution. The proposed method overcomes problems of indefiniteness and using a new method of constructing training data that models the realistic MD. The DNN trained on the data calculated by the Biot-Savart method can accurately estimate the MD for measured and untrained data.
引用
收藏
页数:2
相关论文
共 7 条
  • [1] Characterization of Permanent Magnet Magnetization
    Arbenz, Laure
    Chadebec, Olivier
    Espanet, Christophe
    Rtimi, Youness
    Cauffet, Gilles
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2017, 53 (11)
  • [2] colab, NOTEBOOKS WELCOME IP
  • [3] Duchi J, 2011, J MACH LEARN RES, V12, P2121
  • [4] Igarashi H, 2000, IEEE T MAGN, V36, P1168, DOI 10.1109/20.877648
  • [5] Keras, US
  • [6] Nakai N., 2015, P 17 INT S EL FIELDS
  • [7] Nondestructive Estimation of Magnetization Distribution in Permanent Magnet Using Quasi-Newton Method Based on 2-D Fourier Series Expansion
    Nakamura, Narichika
    Okamoto, Yoshifumi
    Osanai, Kenta
    Doi, Satoshi
    Aoki, Tetsuya
    Okazaki, Keichi
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2020, 56 (01)