SUCCESSIVE MINIMA OF TORIC HEIGHT FUNCTIONS

被引:7
|
作者
Burgos Gil, Jose Ignacio [1 ]
Philippon, Patrice [2 ]
Sombra, Martin [3 ,4 ]
机构
[1] CSIC UAM UCM UCM3, Inst Ciencias Matemat, Calle Nicolas Cabrera 15,Campus UAB, Madrid 28049, Spain
[2] CNRS, Inst Math Jussieu, UMR 7586, Equipe Theorie Nombres, Case 247,4 Pl Jussieu, F-75252 Paris 05, France
[3] ICREA, Barcelona 08007, Spain
[4] Univ Barcelona, Dept Algebra & Geometria, E-08007 Barcelona, Spain
关键词
Height; essential minimum; successive minima; toric variety; toric metrized R-divisor; concave function; Legendre-Fenchel duality; SMALL POINTS; LINE BUNDLES; EQUIDISTRIBUTION;
D O I
10.5802/aif.2985
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a toric metrized R-divisor on a toric variety over a global field, we give a formula for the essential minimum of the associated height function. Under suitable positivity conditions, we also give formulae for all the successive minima. We apply these results to the study, in the toric setting, of the relation between the successive minima and other arithmetic invariants like the height and the arithmetic volume. We also apply our formulae to compute the successive minima for several families of examples, including weighted projective spaces, toric bundles and translates of subtori.
引用
收藏
页码:2145 / 2197
页数:54
相关论文
共 50 条