The chrome domain protein Chd1p from budding yeast is an ATP-dependent chromatin-modifying factor

被引:124
作者
Tran, HG
Steger, DJ
Iyer, VR
Johnson, AD [1 ]
机构
[1] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Microbiol & Immunol, San Francisco, CA 94143 USA
[3] Stanford Univ, Sch Med, Dept Biochem, Stanford, CA 94305 USA
关键词
chromo domain; genomic array; nucleosome remodeling; synthetic lethality;
D O I
10.1093/emboj/19.10.2323
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CHD proteins are members of the chrome domain family, a class of proteins involved in transcription, DNA degradation and chromatin structure. In higher eukaryotes, there are two distinct subfamilies of CHD proteins: CHD1 and CHD3/4. Analyses carried out in vitro indicate that the CHD3/4 proteins may regulate transcription via alteration of chromatin structure. However, little is known about the role of CHD proteins in vivo, particularly the CHD1 subfamily. To understand better the cellular function of CHD proteins, we initiated a study on the Chd1p protein from budding yeast. Using genomic DNA arrays, we identified genes whose expression is affected by the absence of Chd1p, A synthetic-lethal screen uncovered genetic interactions between SWI/SNF genes and CHD1. Biochemical experiments using Chd1p purified from yeast showed that it reconfigures the structure of nucleosome core particles in a manner distinct from the SWI-SNF complex. Taken together, these results suggest that Chd1p functions as a nucleosome remodeling factor, and that Chd1p may share overlapping roles with the SWI-SNF complex to regulate transcription.
引用
收藏
页码:2323 / 2331
页数:9
相关论文
共 40 条
[1]   Components and dynamics of DNA replication complexes in S-cerevisiae: Redistribution of MCM proteins and Cdc45p during S phase [J].
Aparicio, OM ;
Weinstein, DM ;
Bell, SP .
CELL, 1997, 91 (01) :59-69
[2]   USE OF A SCREEN FOR SYNTHETIC LETHAL AND MULTICOPY SUPPRESSEE MUTANTS TO IDENTIFY 2 NEW GENES INVOLVED IN MORPHOGENESIS IN SACCHAROMYCES-CEREVISIAE [J].
BENDER, A ;
PRINGLE, JR .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (03) :1295-1305
[3]   RSC, an essential, abundant chromatin-remodeling complex [J].
Cairns, BR ;
Lorch, Y ;
Li, Y ;
Zhang, MC ;
Lacomis, L ;
ErdjumentBromage, H ;
Tempst, P ;
Du, J ;
Laurent, B ;
Kornberg, RD .
CELL, 1996, 87 (07) :1249-1260
[4]   A MULTISUBUNIT COMPLEX CONTAINING THE SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, AND SNF6 GENE-PRODUCTS ISOLATED FROM YEAST [J].
CAIRNS, BR ;
KIM, YJ ;
SAYRE, MH ;
LAURENT, BC ;
KORNBERG, RD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (05) :1950-1954
[5]   Chromo-domain proteins: linking chromatin structure to epigenetic regulation [J].
Cavalli, G ;
Paro, R .
CURRENT OPINION IN CELL BIOLOGY, 1998, 10 (03) :354-360
[6]   ISWI is an ATP-dependent nucleosome remodeling factor [J].
Corona, DFV ;
Längst, G ;
Clapier, CR ;
Bonte, EJ ;
Ferrari, S ;
Tamkun, JW ;
Becker, PB .
MOLECULAR CELL, 1999, 3 (02) :239-245
[7]   A MAMMALIAN DNA-BINDING PROTEIN THAT CONTAINS A CHROMODOMAIN AND AN SNF2 SWI2-LIKE HELICASE DOMAIN [J].
DELMAS, V ;
STOKES, DG ;
PERRY, RP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (06) :2414-2418
[8]   Exploring the metabolic and genetic control of gene expression on a genomic scale [J].
DeRisi, JL ;
Iyer, VR ;
Brown, PO .
SCIENCE, 1997, 278 (5338) :680-686
[9]   EVOLUTION OF THE SNF2 FAMILY OF PROTEINS - SUBFAMILIES WITH DISTINCT SEQUENCES AND FUNCTIONS [J].
EISEN, JA ;
SWEDER, KS ;
HANAWALT, PC .
NUCLEIC ACIDS RESEARCH, 1995, 23 (14) :2715-2723
[10]   THE CHROMODOMAIN PROTEIN SWI6 - A KEY COMPONENT AT FISSION YEAST CENTROMERES [J].
EKWALL, K ;
JAVERZAT, JP ;
LORENTZ, A ;
SCHMIDT, H ;
CRANSTON, G ;
ALLSHIRE, R .
SCIENCE, 1995, 269 (5229) :1429-1431