Spatial correlation functions of random electromagnetic fields in the presence of a semi-infinite isotropic medium

被引:3
作者
Arnaut, Luk R. [1 ]
机构
[1] Natl Phys Lab, Div Enabling Metrol, Teddington TW11 0LW, Middx, England
来源
PHYSICAL REVIEW E | 2006年 / 74卷 / 05期
关键词
D O I
10.1103/PhysRevE.74.056610
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We extend a previous analysis of spatial correlation functions for classical electromagnetic vector fields near a perfectly conducting boundary [Arnaut, Phys. Rev. E, 73, 036604 (2006)] to the case of an isotropic semi-infinite medium with planar interface and characterized by a first-order impedance boundary condition. The analytical results are illustrated with calculations for the case of point separations in the direction perpendicular to the interface. For the incident plus reflected field, the dependence of the complex-valued and inhomogeneous spatial correlation function on the permittivity, permeability, and conductivity of the medium is determined. For the refracted field, the spatial correlation is again complex valued but homogeneous and highly sensitive to the value of the refractive index. Based on the derived dependencies, nonlocal measurement methods for precision characterization of electromagnetic material properties are suggested. The influence of the directionality of incidence for electromagnetic beams is investigated. Narrowing the beam width results in a slower decrease of the amplitude of the correlation function as a function of point separation. Previously obtained asymptotic results for statistically homogeneous random free fields are retrieved as special cases.
引用
收藏
页数:9
相关论文
共 50 条
[31]   Influence functions for the infinite and semi-infinite strip [J].
Cole, KD ;
Yen, DHY .
JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2001, 15 (04) :431-438
[32]   Influence Functions for the Infinite and Semi-Infinite Strip [J].
Cole, Kevin D. ;
Yen, David H. Y. .
Journal of Thermophysics and Heat Transfer, 2001, 15 (1-4) :431-438
[33]   SURFACE WAVES IN AN ISOTROPIC SEMI-INFINITE BODY [J].
Apostol, B. F. .
ROMANIAN REPORTS IN PHYSICS, 2013, 65 (04) :1204-1213
[34]   NONSTATIONARY RADIATION-FIELDS IN SEMI-INFINITE MEDIUM WITH RADIATION SOURCES INSIDE MEDIUM [J].
GUTSHABASH, SD .
IZVESTIYA AKADEMII NAUK SSSR FIZIKA ATMOSFERY I OKEANA, 1977, 13 (01) :42-51
[35]   Semi-infinite nonlinear electromagnetic crystal [J].
S. E. Bankov .
Journal of Communications Technology and Electronics, 2011, 56 :613-623
[36]   Semi-infinite nonlinear electromagnetic crystal [J].
Bankov, S. E. .
JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2011, 56 (06) :613-623
[37]   APPROXIMATE EXPRESSIONS FOR THE GREEN'S FUNCTIONS OF A SEMI-INFINITE, ELASTIC MEDIUM [J].
Plibersek, Tomaz ;
Umek, Andrej .
ACTA GEOTECHNICA SLOVENICA, 2010, 7 (02) :54-63
[38]   RADIATION DIFFUSION IN A SEMI-INFINITE MEDIUM [J].
SOBOLEV, VV .
DOKLADY AKADEMII NAUK SSSR, 1957, 116 (01) :45-48
[39]   BAUSCHINGER LOOP IN A SEMI-INFINITE MEDIUM [J].
JAGANNADHAM, K .
SCRIPTA METALLURGICA, 1974, 8 (12) :1397-1404
[40]   MULTIPLE SCATTERING IN A SEMI-INFINITE MEDIUM [J].
WEYMOUTH, JW .
PHYSICAL REVIEW, 1951, 84 (04) :766-775