Deep Domain Generalization via Conditional Invariant Adversarial Networks

被引:329
作者
Li, Ya [1 ]
Tian, Xinmei [1 ]
Gong, Mingming [2 ,3 ]
Liu, Yajing [1 ]
Liu, Tongliang [4 ]
Zhang, Kun [2 ]
Tao, Dacheng [4 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Technol Geospatial Informat Proc & Ap, Hefei, Peoples R China
[2] Carnegie Mellon Univ, Dept Philosophy, Pittsburgh, PA 15213 USA
[3] Univ Pittsburgh, Dept Biomed Informat, Pittsburgh, PA USA
[4] Univ Sydney, UBTECH Sydney AI Ctr, FEIT, SIT, Sydney, NSW, Australia
来源
COMPUTER VISION - ECCV 2018, PT 15 | 2018年 / 11219卷
基金
澳大利亚研究理事会;
关键词
Domain generalization; Adversarial networks; Domain invariant representation;
D O I
10.1007/978-3-030-01267-0_38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain generalization aims to learn a classification model from multiple source domains and generalize it to unseen target domains. A critical problem in domain generalization involves learning domain-invariant representations. Let X and Y denote the features and the labels, respectively. Under the assumption that the conditional distribution P(Y vertical bar X) remains unchanged across domains, earlier approaches to domain generalization learned the invariant representation T(X) by minimizing the discrepancy of the marginal distribution P(T(X)). However, such an assumption of stable P(Y vertical bar X) does not necessarily hold in practice. In addition, the representation learning function T(X) is usually constrained to a simple linear transformation or shallow networks. To address the above two drawbacks, we propose an end-to-end conditional invariant deep domain generalization approach by leveraging deep neural networks for domain-invariant representation learning. The domain-invariance property is guaranteed through a conditional invariant adversarial network that can learn domain-invariant representations w.r.t. the joint distribution P(T(X), Y) if the target domain data are not severely class unbalanced. We perform various experiments to demonstrate the effectiveness of the proposed method.
引用
收藏
页码:647 / 663
页数:17
相关论文
共 50 条
  • [41] Transferable attention networks for adversarial domain adaptation
    Zhang, Changchun
    Zhao, Qingjie
    Wang, Yu
    INFORMATION SCIENCES, 2020, 539 : 422 - 433
  • [42] Discriminative adversarial domain generalization with meta-learning based cross-domain validation
    Chen, Keyu
    Zhuang, Di
    Chang, J. Morris
    NEUROCOMPUTING, 2022, 467 : 418 - 426
  • [43] Graph-based domain adversarial learning framework for video anomaly detection domain generalization
    Mei, Xue
    Wei, Yachuan
    Chen, Haoyang
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (13) : 18977 - 19002
  • [44] Label-Efficient Domain Generalization via Collaborative Exploration and Generalization
    Yuan, Junkun
    Ma, Xu
    Chen, Defang
    Kuang, Kun
    Wu, Fei
    Lin, Lanfen
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 2361 - 2370
  • [45] Domain Generalization via Feature Variation Decorrelation
    Liu, Chang
    Wang, Lichen
    Li, Kai
    Fu, Yun
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 1683 - 1691
  • [46] A temporal domain generalization method for PM2.5 concentration prediction based on adversarial training and deep variational information bottleneck
    Shan, Miaoxuan
    Ye, Chunlin
    Chen, Peng
    Peng, Shufan
    ATMOSPHERIC POLLUTION RESEARCH, 2025, 16 (05)
  • [47] Quality-Invariant Domain Generalization for Face Anti-Spoofing
    Liu, Yongluo
    Li, Zun
    Xu, Yaowen
    Guo, Zhizhi
    Zou, Zhaofan
    Wu, Lifang
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (11) : 5239 - 5254
  • [48] Multi-Domain Adversarial Feature Generalization for Person Re-Identification
    Lin, Shan
    Li, Chang-Tsun
    Kot, Alex C.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1596 - 1607
  • [49] A Causality-Aware Perspective on Domain Generalization via Domain Intervention
    Shao, Youjia
    Wang, Shaohui
    Zhao, Wencang
    ELECTRONICS, 2024, 13 (10)
  • [50] Invariant Feature Purification Method for Domain Generalization of Rolling Bearing Fault Diagnosis
    Xie, Yining
    Yang, Guojun
    Chen, Hongzhan
    Zhao, Zhichao
    Leng, Xin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74