Influence of Damping Constant on Models of Magnetic Hyperthermia

被引:2
|
作者
Osaci, M. [1 ]
机构
[1] Politehn Univ Timisoara, Dept Elect Engn & Ind Informat, 2 Victoriei Sq, Timisoara 300006, Timis County, Romania
关键词
RELAXATION-TIME; NANOPARTICLES; FLUID;
D O I
10.12693/APhysPolA.139.51
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In magnetic hyperthermia, the effectiveness for tumour cell destruction is measured by the specific loss power. Theoretically, within the medically accepted ranges for the amplitude and frequency of the applied magnetic field, if energy losses in nanofluids occur through magnetic relaxation processes, the specific loss power is calculated based on the linear response theory. In this theory, the specific loss power depends on the effective magnetic relaxation time of the colloidal nanoparticle system which involves either the Brownian relaxation time or the Ned relaxation time. All theoretical approaches to the Ned relaxation time show that it depends directly on the diffusional relaxation time and inversely on the smallest non-vanishing eigenvalue of the Fokker-Planck equation, where the damping constant is expressed one way or another by a value, generally unknown, which in most cases is approximated. This paper shows through a numerical experiment how the damping constant influences the specific loss power, referring to some benchmarks on how to choose the most accurate value of this constant in the case of magnetite nanoparticles, mostly used in magnetic hyperthermia applications. Following an uninspired choice of the damping constant value, the simulated or calculated data can deviate from the experimentally determined data, even if, in general, the model is correct and as close as possible to reality.
引用
收藏
页码:51 / 55
页数:5
相关论文
共 50 条
  • [41] The influence of hydrodynamic effects on the complex susceptibility response of magnetic fluids undergoing oscillatory fields: New insights for magnetic hyperthermia
    Guimaraes, A. B.
    Cunha, F. R.
    Gontijo, R. G.
    PHYSICS OF FLUIDS, 2020, 32 (01)
  • [42] Influence of the Aspect Ratio of Iron Oxide Nanorods on Hysteresis-Loss-Mediated Magnetic Hyperthermia
    Sugumaran, Pon Janani
    Yang, Yong
    Wang, Yanyun
    Liu, Xiaoli
    Ding, Jun
    ACS APPLIED BIO MATERIALS, 2021, 4 (06) : 4809 - 4820
  • [43] Clinical applications of magnetic nanoparticles for hyperthermia
    Thiesen, Burghard
    Jordan, Andreas
    INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2008, 24 (06) : 467 - 474
  • [44] Magnetic Nanoparticle Dosimetry in Hyperthermia Therapy
    Astefanoaei, Iordana
    Stancu, Alexandru
    TIM 19 PHYSICS CONFERENCE, 2020, 2218
  • [45] Magnetic hyperthermia of laponite based ferrofluid
    Diamantopoulos, G.
    Basina, G.
    Tzitzios, V.
    Karakosta, E.
    Fardis, M.
    Jaglicic, Z.
    Lazaridis, N.
    Papavassiliou, G.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2013, 336 : 71 - 74
  • [46] Intravenous magnetic nanoparticle cancer hyperthermia
    Huang, Hui S.
    Hainfeld, James F.
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2013, 8 : 2521 - 2532
  • [47] Relating Magnetic Properties and High Hyperthermia Performance of Iron Oxide Nanoflowers
    Bender, Philipp
    Fock, Jeppe
    Frandsen, Cathrine
    Hansen, Mikkel F.
    Balceris, Christoph
    Ludwig, Frank
    Posth, Oliver
    Wetterskog, Erik
    Bogart, Lara K.
    Southern, Paul
    Szczerba, Wojciech
    Zeng, Lunjie
    Witte, Kerstin
    Gruettner, Cordula
    Westphal, Fritz
    Honecker, Dirk
    Gonzalez-Alonso, David
    Fernandez Barquin, Luis
    Johansson, Christer
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (05) : 3068 - 3077
  • [48] Polarized superlocalization in magnetic nanoparticle hyperthermia
    Iszaly, Zs
    Gresits, I
    Marian, I. G.
    Thuroczy, Gy
    Sagi, O.
    Markus, B. G.
    Simon, F.
    Nandori, I
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (20)
  • [49] Hybrid nanoparticles for magnetic and plasmonic hyperthermia
    Ovejero, Jesus G.
    Morales, Irene
    de la Presa, Patricia
    Mille, Nicolas
    Carrey, Julian
    Garcia, Miguel A.
    Hernando, Antonio
    Herrasti, Pilar
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (37) : 24065 - 24073
  • [50] Smart Bone Graft Composite for Cancer Therapy Using Magnetic Hyperthermia
    Santana, Geovana L.
    Crovace, Murilo C.
    Mazon, Ernesto E.
    de Oliveira, Adilson J. A.
    Pavan, Theo Z.
    Zanotto, Edgar D.
    MATERIALS, 2022, 15 (09)