Wearable carbon nanotube-based fabric sensors for monitoring human physiological performance

被引:61
作者
Wang, Long [1 ]
Loh, Kenneth J. [1 ]
机构
[1] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
carbon nanotube; human performance sensing; nanocomposite; respiration rate; temperature sensing; wearable technology; MECHANICAL-PROPERTIES; ELECTRICAL-PROPERTIES; STRAIN SENSORS; PRESSURE; GRAPHENE; SKIN; FILMS; COMPOSITE; DESIGN; SYSTEM;
D O I
10.1088/1361-665X/aa6849
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A target application of wearable sensors is to detect human motion and to monitor physical activity for improving athletic performance and for delivering better physical therapy. In addition, measuring human vital signals (e.g., respiration rate and body temperature) provides rich information that can be used to assess a subject's physiological or psychological condition. This study aims to design a multifunctional, wearable, fabric-based sensing system. First, carbon nanotube (CNT)-based thin films were fabricated by spraying. Second, the thin films were integrated with stretchable fabrics to form the fabric sensors. Third, the strain and temperature sensing properties of sensors fabricated using different CNT concentrations were characterized. Furthermore, the sensors were demonstrated to detect human finger bending motions, so as to validate their practical strain sensing performance. Finally, to monitor human respiration, the fabric sensors were integrated with a chest band, which was directly worn by a human subject. Quantification of respiration rates were successfully achieved. Overall, the fabric sensors were characterized by advantages such as flexibility, ease of fabrication, lightweight, low-cost, noninvasiveness, and user comfort.
引用
收藏
页数:11
相关论文
共 32 条
  • [1] Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite
    Amjadi, Morteza
    Pichitpajongkit, Aekachan
    Lee, Sangjun
    Ryu, Seunghwa
    Park, Inkyu
    [J]. ACS NANO, 2014, 8 (05) : 5154 - 5163
  • [2] AMON:: A wearable multiparameter medical monitoring and alert system
    Anliker, U
    Ward, JA
    Lukowicz, P
    Tröster, G
    Dolveck, F
    Baer, M
    Keita, F
    Schenker, EB
    Catarsi, F
    Coluccini, L
    Belardinelli, A
    Shklarski, D
    Alon, M
    Hirt, E
    Schmid, R
    Vuskovic, M
    [J]. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2004, 8 (04): : 415 - 427
  • [3] [Anonymous], 1999, REALITY, DOI DOI 10.1007/BF01418152
  • [4] Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
  • [5] Carbon nanotubes - the route toward applications
    Baughman, RH
    Zakhidov, AA
    de Heer, WA
    [J]. SCIENCE, 2002, 297 (5582) : 787 - 792
  • [6] Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing
    Choi, ES
    Brooks, JS
    Eaton, DL
    Al-Haik, MS
    Hussaini, MY
    Garmestani, H
    Li, D
    Dahmen, K
    [J]. JOURNAL OF APPLIED PHYSICS, 2003, 94 (09) : 6034 - 6039
  • [7] Electrical conductivity of individual carbon nanotubes
    Ebbesen, TW
    Lezec, HJ
    Hiura, H
    Bennett, JW
    Ghaemi, HF
    Thio, T
    [J]. NATURE, 1996, 382 (6586) : 54 - 56
  • [8] Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films
    Fan, Feng-Ru
    Lin, Long
    Zhu, Guang
    Wu, Wenzhuo
    Zhang, Rui
    Wang, Zhong Lin
    [J]. NANO LETTERS, 2012, 12 (06) : 3109 - 3114
  • [9] Carbon nanotube-reinforced epoxy-compo sites:: enhanced stiffness and fracture toughness at low nanotube content
    Gojny, FH
    Wichmann, MHG
    Köpke, U
    Fiedler, B
    Schulte, K
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2004, 64 (15) : 2363 - 2371
  • [10] A wearable and highly sensitive pressure sensor with ultrathin gold nanowires
    Gong, Shu
    Schwalb, Willem
    Wang, Yongwei
    Chen, Yi
    Tang, Yue
    Si, Jye
    Shirinzadeh, Bijan
    Cheng, Wenlong
    [J]. NATURE COMMUNICATIONS, 2014, 5