Wavetrain Solutions of a Reaction-Diffusion-Advection Model of Mussel-Algae Interaction

被引:10
作者
Holzer, Matt [1 ]
Popovic, Nikola [2 ,3 ]
机构
[1] George Mason Univ, Dept Math Sci, Fairfax, VA 22030 USA
[2] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland
[3] Univ Edinburgh, Maxwell Inst Math Sci, Edinburgh EH9 3FD, Midlothian, Scotland
基金
美国国家科学基金会;
关键词
periodic wavetrain; reaction-diffusion-advection equation; geometric singular perturbation theory; geometric desingularization; TRACKING INVARIANT-MANIFOLDS; SINGULAR PERTURBATION-THEORY; EXCHANGE LEMMAS; SPATIAL-PATTERNS; BANDED VEGETATION; KLAUSMEIER MODEL; BIFURCATIONS; FRONT; FORMS;
D O I
10.1137/15M1040463
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a system of coupled partial differential equations modeling the interaction of mussels and algae in advective environments. A key parameter in the equations is the ratio of the diffusion rate of the mussel species and the advection rate of the algal concentration. When advection dominates diffusion, one observes large-amplitude solutions representing bands of mussels propagating slowly in the upstream direction. Here, we prove the existence of a family of such periodic wavetrain solutions. Our proof relies on geometric singular perturbation theory to construct these solutions as periodic orbits of the associated traveling wave equations in the large-advection small-diffusion limit. The construction encounters a number of mathematical obstacles which necessitate a compactification of phase space, geometric desingularization to remedy a loss of normal hyperbolicity, and the application of a generalized exchange lemma at a loss-of-stability turning point. In particular, our analysis uncovers logarithmic (switchback) corrections to the leading-order solution.
引用
收藏
页码:431 / 478
页数:48
相关论文
共 40 条
[1]  
[Anonymous], 1989, Dynamics reported, Vol. 2, DOI [10.1007/978-3-322-96657-54, DOI 10.1007/978-3-322-96657-54]
[2]  
[Anonymous], 1988, APPL MATH SCI
[3]   A geometric construction of traveling waves in a bioremediation model [J].
Beck, M. ;
Doelman, A. ;
Kaper, T. J. .
JOURNAL OF NONLINEAR SCIENCE, 2006, 16 (04) :329-349
[4]   Shift in the velocity of a front due to a cutoff [J].
Brunet, E ;
Derrida, B .
PHYSICAL REVIEW E, 1997, 56 (03) :2597-2604
[5]  
Carr J., 1981, Applications of Center Manifold Theory, DOI DOI 10.1007/978-1-4612-5929-9
[6]  
Chow S.-N., 1994, NORMAL FORMS BIFURCA
[7]   Center manifolds for smooth invariant manifolds [J].
Chow, SN ;
Liu, W ;
Yi, YF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (11) :5179-5211
[8]  
Coppel W.A., 1978, Lecture Notes in Mathematics, V629
[10]  
Dumortier F, 1996, MEM AM MATH SOC, V121, P1