Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis

被引:461
作者
Boerigter, Calvin [1 ]
Campana, Robert [1 ]
Morabito, Matthew [1 ]
Linic, Suljo [1 ]
机构
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
ENHANCED RAMAN-SCATTERING; SILVER NANOPARTICLES; INDUCED DISSOCIATION; COLLOID SURFACES; VISIBLE-LIGHT; NANOSTRUCTURES; QUANTUM; SPECTROSCOPY; RESONANCES; NANOCUBES;
D O I
10.1038/ncomms10545
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Plasmonic metal nanoparticles enhance chemical reactions on their surface when illuminated with light of particular frequencies. It has been shown that these processes are driven by excitation of localized surface plasmon resonance (LSPR). The interaction of LSPR with adsorbate orbitals can lead to the injection of energized charge carriers into the adsorbate, which can result in chemical transformations. The mechanism of the charge injection process (and role of LSPR) is not well understood. Here we shed light on the specifics of this mechanism by coupling optical characterization methods, mainly wavelength-dependent Stokes and anti-Stokes SERS, with kinetic analysis of photocatalytic reactions in an Ag nanocube-methylene blue plasmonic system. We propose that localized LSPR-induced electric fields result in a direct charge transfer within the molecule-adsorbate system. These observations provide a foundation for the development of plasmonic catalysts that can selectively activate targeted chemical bonds, since the mechanism allows for tuning plasmonic nanomaterials in such a way that illumination can selectively enhance desired chemical pathways.
引用
收藏
页数:9
相关论文
共 44 条
[31]   Optical properties of metallic films for vertical-cavity optoelectronic devices [J].
Rakic, AD ;
Djurisic, AB ;
Elazar, JM ;
Majewski, ML .
APPLIED OPTICS, 1998, 37 (22) :5271-5283
[32]   Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications [J].
Rycenga, Matthew ;
Cobley, Claire M. ;
Zeng, Jie ;
Li, Weiyang ;
Moran, Christine H. ;
Zhang, Qiang ;
Qin, Dong ;
Xia, Younan .
CHEMICAL REVIEWS, 2011, 111 (06) :3669-3712
[33]   Revealing the quantum regime in tunnelling plasmonics [J].
Savage, Kevin J. ;
Hawkeye, Matthew M. ;
Esteban, Ruben ;
Borisov, Andrei G. ;
Aizpurua, Javier ;
Baumberg, Jeremy J. .
NATURE, 2012, 491 (7425) :574-577
[34]  
Schatz GC, 2006, TOP APPL PHYS, V103, P19
[35]   Quantum plasmon resonances of individual metallic nanoparticles [J].
Scholl, Jonathan A. ;
Koh, Ai Leen ;
Dionne, Jennifer A. .
NATURE, 2012, 483 (7390) :421-U68
[36]   Localized surface plasmon resonance spectroscopy of single silver nanocubes [J].
Sherry, LJ ;
Chang, SH ;
Schatz, GC ;
Van Duyne, RP ;
Wiley, BJ ;
Xia, YN .
NANO LETTERS, 2005, 5 (10) :2034-2038
[37]   Adsorbate photochemistry on a colloid surface: Phthalazine on silver [J].
Suh, JS ;
Jang, NH ;
Jeong, DH ;
Moskovits, M .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (02) :805-813
[38]   PHOTOCHEMICAL DECOMPOSITION AT COLLOID SURFACES [J].
SUH, JS ;
MOSKOVITS, M ;
SHAKHESEMAMPOUR, J .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (08) :1678-1683
[39]   Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions [J].
Tan, Shu Fen ;
Wu, Lin ;
Yang, Joel K. W. ;
Bai, Ping ;
Bosman, Michel ;
Nijhuis, Christian A. .
SCIENCE, 2014, 343 (6178) :1496-1499
[40]   Self-Organized Silver Nanoparticles for Three-Dimensional Plasmonic Crystals [J].
Tao, Andrea R. ;
Ceperley, Daniel P. ;
Sinsermsuksakul, Prasert ;
Neureuther, Andrew R. ;
Yang, Peidong .
NANO LETTERS, 2008, 8 (11) :4033-4038