Two-tuple balance of non-binary sequences with ideal two-level autocorrelation

被引:27
作者
Gong, Guang
Song, Hong-Yeop [1 ]
机构
[1] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
[2] Yonsei Univ, CITY, Sch Elect & Elect Engn, Seoul 120749, South Korea
基金
加拿大自然科学与工程研究理事会;
关键词
non-binary PN sequences; array structure; balance property; difference-balance property; two-tuple-balance property; ideal two-level autocorrelation; cyclic difference sets with singer type parameters;
D O I
10.1016/j.dam.2006.04.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p be a prime, q = p(m) and F-q be the finite field with q elements. In this paper, we will consider q-ary sequences of period q(n)-1 for q > 2 and study their various balance properties: symbol-balance, difference-balance, and two-tuple-balance properties. The array structure of the sequences is introduced, and various implications between these balance properties and the array structure are proved. Specifically, we prove that if a q-ary sequence of period q(n)-1 is difference-balanced and has the "cyclic" array structure then it is two-tuple-balanced. We conjecture that a difference-balanced q-ary sequence of period q(n)-1 must have the cyclic array structure. The conjecture is confirmed with respect to all of the known q-ary sequences which are difference-balanced, in particular, which have the ideal two-level autocorrelation function when q = p. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:2590 / 2598
页数:9
相关论文
共 20 条
[1]  
Baumert L.D., 1971, CYCLIC DIFFERENCE SE
[2]  
Golomb S. W., 1967, Shift Register Sequences
[3]  
Golomb S. W., 1982, SHIFT REGISTER SEQUE
[4]  
Golomb S. W., 2005, SIGNAL DESIGN GOOD C
[5]  
GOLOMB SW, 1991, LONDON MATH SOC LECT, V166, P1
[6]   Q-ary cascaded GMW sequences [J].
Gong, G .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (01) :263-267
[7]  
Hall M., 1956, P AM MATH SOC, V7, P975, DOI DOI 10.1090/S0002-9939-1956-0082502-7
[8]   New nonbinary sequences with ideal two-level autocorrelation [J].
Helleseth, T ;
Gong, G .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (11) :2868-2872
[9]  
JUNGNICKEL D, 1996, CRC HDB COMBINATORIA
[10]  
JUNGNICKEL D, 1992, CONT DESIGN THEORY C, P241