Generalized "stacked bases" theorem for modules over semiperfect rings

被引:0
|
作者
Generalov, A., I [1 ]
Zilberbord, I. M. [1 ]
机构
[1] St Petersburg State Univ, Dept Math & Mech, St Petersburg, Russia
关键词
Principal indecomposable module; projective module; semiperfect ring; stacked basis; stacked decomposition; bimodules and ideals; direct sum decomposition and cancellation in associative algebras;
D O I
10.1080/00927872.2021.1879105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The history of generalized "stacked bases" theorem origins from the result of Hill and Megibben on abelian groups. We extend this theorem for modules over semiperfect rings and as a consequence we show that for a submodule H of a projective module G over a semiperfect ring, the following conditions are equivalent: 1. there exists a decomposition G = circle plus P-i is an element of I(i) into a direct sum of indecomposable modules P-i, such that H = circle plus(i is an element of I)(P-i boolean AND H); 2. G/H is a direct sum of a family of modules, isomorphic to factor modules of principal indecomposable modules.
引用
收藏
页码:2597 / 2605
页数:9
相关论文
共 50 条