Sensorless haptic control for human-robot collaborative assembly

被引:20
|
作者
Liu, Sichao [1 ]
Wang, Lihui [1 ]
Wang, Xi Vincent [1 ]
机构
[1] KTH Royal Inst Technol, Dept Prod Engn, S-10044 Stockholm, Sweden
关键词
Assembly; Robot; Human-robot collaboration; Sensorless haptic control; ADMITTANCE CONTROL; INDUSTRIAL ROBOT; MODEL; SIMULATION;
D O I
10.1016/j.cirpj.2020.11.015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents an approach to haptically controlling an industrial robot without using any external sensors for human-robot collaborative assembly. The sensorless haptic control approach is enabled by the dynamic models of the robot where only joint angles and joint torques are measurable. Accurate dynamic models of the robot in the presliding and sliding regimes are developed to estimate the external forces/torques, where the friction model is also explored. The estimated external force applied to the robot by an operator is converted to the reference position and speed of the robot by an admittance controller. In this research, adaptive admittance control is adopted to support human-robot collaborative assembly, naturally and easily, with accurate positioning and control for smooth movement. Moreover, torque-based commands are used to control the robot's assembly operations. Finally, the proposed approach is validated by a case study on assisting an operator during the collaborative assembly of a car engine. (C) 2020 CIRP.
引用
收藏
页码:132 / 144
页数:13
相关论文
共 50 条
  • [1] Sensorless Human-Robot Collaborative Assembly Considering Load and Friction Compensation
    Xiao, Juliang
    Dou, Saixiong
    Zhao, Wei
    Liu, Haitao
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (03): : 5945 - 5952
  • [2] Symbiotic human-robot collaborative assembly
    Wang, L.
    Gao, R.
    Vancza, J.
    Krueger, J.
    Wang, X., V
    Makris, S.
    Chryssolouris, G.
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2019, 68 (02) : 701 - 726
  • [3] Multimodal Data-Driven Robot Control for Human-Robot Collaborative Assembly
    Liu, Sichao
    Wang, Lihui
    Wang, Xi Vincent
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2022, 144 (05):
  • [4] Brainwaves driven human-robot collaborative assembly
    Mohammed, Abdullah
    Wang, Lihui
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2018, 67 (01) : 13 - 16
  • [5] Implementing a Human-Robot Collaborative Assembly Workstation
    Bejarano, Ronal
    Ferrer, Borja Ramis
    Mohammed, Wael M.
    Lastra, Jose L. Martinez
    2019 IEEE 17TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2019, : 557 - 564
  • [6] Benchmarking human-robot collaborative assembly tasks
    Duarte, Laura
    Neves, Miguel
    Neto, Pedro
    RESULTS IN ENGINEERING, 2024, 22
  • [7] Function Block-Based Multimodal Control for Symbiotic Human-Robot Collaborative Assembly
    Liu, Sichao
    Wang, Lihui
    Wang, Xi Vincent
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2021, 143 (09):
  • [8] Collaborative assembly task realization using selected type of a human-robot interaction
    Tlach, Vladimir
    Kuric, Ivan
    Sagova, Zuzana
    Zajacko, Ivan
    13TH INTERNATIONAL SCIENTIFIC CONFERENCE ON SUSTAINABLE, MODERN AND SAFE TRANSPORT (TRANSCOM 2019), 2019, 40 : 541 - 547
  • [9] Cycle Time and Human Fatigue Minimization for Human-Robot Collaborative Assembly Cell
    Zhang, Ming
    Li, Chunquan
    Shang, Yuling
    Liu, Zhengwei
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (03): : 6147 - 6154
  • [10] Assessment of Failures in Collaborative Human-Robot Assembly Workcells
    Maisano, Domenico A.
    Antonelli, Dario
    Franceschini, Fiorenzo
    COLLABORATIVE NETWORKS AND DIGITAL TRANSFORMATION, 2019, : 562 - 571