On Shimura, Shintani and Eichler-Zagier correspondences

被引:31
作者
Manickam, M [1 ]
Ramakrishnan, B
机构
[1] RKM Vivekananda Coll, Dept Math, Mylapore 600004, Chennai, India
[2] Mehta Res Inst Math & Math Phys, Allahabad 211019, Uttar Pradesh, India
关键词
Jacobi forms; modular forms of half-integral weight; newforms;
D O I
10.1090/S0002-9947-00-02423-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we set up Shimura and Shintani correspondences between Jacobi forms and modular forms of integral weight for arbitrary level and character, and generalize the Eichler-Zagier isomorphism between Jacobi forms and modular forms of half-integral weight to higher levels. Using this together with the known results, we get a strong multiplicity 1 theorem in certain cases for both Jacobi cusp newforms and half-integral weight cusp newforms. As a consequence, we get, among other results, the explicit Waldspurger theorem.
引用
收藏
页码:2601 / 2617
页数:17
相关论文
共 23 条
[1]   HECKE OPERATORS ON GAMMAO(M) [J].
ATKIN, AOL ;
LEHNER, J .
MATHEMATISCHE ANNALEN, 1970, 185 (02) :134-&
[2]  
Eichler M., 1985, The theory of Jacobi forms
[3]   HEEGNER POINTS AND DERIVATIVES OF L-SERIES .2. [J].
GROSS, B ;
KOHNEN, W ;
ZAGIER, D .
MATHEMATISCHE ANNALEN, 1987, 278 (1-4) :497-562
[4]   FOURIER COEFFICIENTS OF MODULAR-FORMS OF HALF-INTEGRAL WEIGHT [J].
IWANIEC, H .
INVENTIONES MATHEMATICAE, 1987, 87 (02) :385-401
[5]  
Jacobi C. G. J., 1829, Fundamenta Nova Theoriae Functionum Ellipticarum
[6]   FOURIER COEFFICIENTS OF MODULAR-FORMS OF HALF-INTEGRAL WEIGHT [J].
KOHNEN, W .
MATHEMATISCHE ANNALEN, 1985, 271 (02) :237-268
[7]   VALUES OF L-SERIES OF MODULAR-FORMS AT THE CENTER OF THE CRITICAL STRIP [J].
KOHNEN, W ;
ZAGIER, D .
INVENTIONES MATHEMATICAE, 1981, 64 (02) :175-198
[8]  
KOHNEN W, 1982, J REINE ANGEW MATH, V333, P32
[9]   NEWFORMS AND FUNCTIONAL-EQUATIONS [J].
LI, WW .
MATHEMATISCHE ANNALEN, 1975, 212 (04) :285-315
[10]   ON SHINTANI CORRESPONDENCE [J].
MANICKAM, M ;
RAMAKRISHNAN, B ;
VASUDEVAN, TC .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1989, 99 (03) :235-247