Hereditary Coreflective Subcategories in Certain Categories of Abelian Semitopological Groups

被引:0
作者
Pitrova, Veronika [1 ]
机构
[1] Univ JE Purkyne, Dept Math, Fac Sci, Ceske Mladeze 8, Usti Nad Labem 40096, Czech Republic
关键词
semitopological group; abelian group; coreflective subcategory; hereditary subcategory; PRODUCTIVITY;
D O I
10.3390/axioms8030085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be an epireflective subcategory of the category of all semitopological groups that consists only of abelian groups. We describe maximal hereditary coreflective subcategories of A that are not bicoreflective in A in the case that the A-reflection of the discrete group of integers is a finite cyclic group, the group of integers with a topology that is not T0, or the group of integers with the topology generated by its subgroups of the form pn, where n is an element of N, p is an element of P and P is a given set of prime numbers.
引用
收藏
页数:6
相关论文
共 6 条
[1]  
Adamek J., Abstract and concrete categories, the joy of cats
[2]  
Arhangelskii A.V., 2008, ATLANTIS STUDIES MAT, VI
[3]   Productivity of Coreflective Subcategories of Semitopological Groups [J].
Batikova, Bara ;
Husek, Miroslav .
APPLIED CATEGORICAL STRUCTURES, 2016, 24 (05) :497-508
[4]   Productivity numbers in paratopological groups [J].
Batikova, Bara ;
Husek, Miroslav .
TOPOLOGY AND ITS APPLICATIONS, 2015, 193 :167-174
[5]  
Herrlich H., 1999, COMMENT MATH U CAROL, V40, P551
[6]   Hereditary coreflective subcategories in epireflective subcategories of semitopological groups [J].
Pitrova, Veronika .
TOPOLOGY AND ITS APPLICATIONS, 2019, 252 :9-16