Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries

被引:145
|
作者
Ji, Liwen [1 ]
Yao, Yingfang [1 ]
Toprakci, Ozan [1 ]
Lin, Zhan [1 ]
Liang, Yinzheng [1 ]
Shi, Quan [1 ]
Medford, Andrew J. [1 ]
Millns, Christopher R. [1 ]
Zhang, Xiangwu [1 ]
机构
[1] N Carolina State Univ, Dept Text Engn Chem & Sci, Fiber & Polymer Sci Program, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
Electrospinning; Carbon nanofibers; Polyacrylonitrile; Polypyrrole; Lithium-ion batteries; ORDERED MESOPOROUS CARBON; NANOSTRUCTURED MATERIALS; POLYPYRROLE NANOTUBES; SECONDARY BATTERIES; ENERGY-CONVERSION; STORAGE DEVICES; ANODE MATERIAL; NANOCOMPOSITE; COMPOSITE; MORPHOLOGY;
D O I
10.1016/j.jpowsour.2009.10.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon nanofibers were prepared through electrospinning a blend solution of polyacrylonitrile and polypyrrole, followed by carbonization at 700 degrees C. Structural features of electrospun polyacrylonitrile/polypyrrole bicomponent nanofibers and their corresponding carbon nanofibers were characterized using scanning electron microscopy, differential scanning calorimeter, thermo-gravimetric analysis, wide-angle X-ray diffraction, and Raman spectroscopy. It was found that intermolecular interactions are formed between two different polymers, which influence the thermal properties of electrospun bicomponent nanofibers. In addition, with the increase of polypyrrole concentration, the resultant carbon nanofibers exhibit increasing disordered structure. These carbon nanofibers were used as anodes for rechargeable lithium-ion batteries without adding any polymer binder or conductive material and they display high reversible capacity, improved cycle performance, relatively good rate capability, and clear fibrous morphology even after 50 charge/discharge cycles. The improved electrochemical performance of these carbon nanofibers can be attributed to their unusual surface properties and unique structural features, which amplify both surface area and extensive intermingling between electrode and electrolyte phases over small length scales, thereby leading to fast kinetics and short pathways for both Li ions and electrons. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2050 / 2056
页数:7
相关论文
共 50 条
  • [42] Electrospun Core-Shell Nanofiber as Separator for Lithium-Ion Batteries with High Performance and Improved Safety
    Liang, Zheng
    Zhao, Yun
    Li, Yanxi
    ENERGIES, 2019, 12 (17)
  • [43] Electrospun Carbon Nanofiber/Boron Nitride Composites as Flexible Anodes for Lithium-Ion Batteries
    Chen, Minghua
    Zhang, Shouzhi
    Zhang, Jiawei
    Chen, Qingguo
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2019, 19 (01) : 220 - 225
  • [44] A high-rate carbon electrode for rechargeable lithium-ion batteries
    Tossici, R
    Berrettoni, M
    Nalimova, V
    Marassi, R
    Scrosati, B
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (03) : L64 - L67
  • [45] High-rate carbon electrode for rechargeable lithium-ion batteries
    Tossici, R.
    Berrettoni, M.
    Nalimova, V.
    Marassi, R.
    Journal of the Electrochemical Society, 1996, 143 (03):
  • [46] Electrochemical performance and thermal stability of the electrospun PTFE nanofiber separator for lithium-ion batteries
    Li, Jingde
    Zhong, Qin
    Yao, Yongyi
    Bi, Songhu
    Zhou, Tao
    Guo, XiaoMing
    Wu, Mengqiang
    Feng, Tingting
    Xiang, Ruili
    JOURNAL OF APPLIED POLYMER SCIENCE, 2018, 135 (29)
  • [47] Organoboron-thiophene-based polymer electrodes for high-performance lithium-ion batteries
    Bai, Yunfei
    Liu, Ting
    Peng, Huayu
    Zhao, Han
    Fan, Qingchen
    Pan, Xiaobo
    Zhou, Lian
    Zhao, Hao
    RSC ADVANCES, 2024, 14 (10) : 7215 - 7220
  • [48] Electrodeposited MnOx/carbon nanofiber composites for use as anode materials in rechargeable lithium-ion batteries
    Lin, Zhan
    Ji, Liwen
    Woodroof, Mariah D.
    Zhang, Xiangwu
    JOURNAL OF POWER SOURCES, 2010, 195 (15) : 5025 - 5031
  • [49] Metal Chelation Enables High-Performance Tea Polyphenol Electrodes for Lithium-Ion Batteries
    Guo, Yan
    Guo, Junpo
    Li, Bo
    Zheng, Yun
    Lei, Wen
    Jiang, Jiangmin
    Xu, Jincheng
    Shen, Jingjun
    Li, Jielei
    Shao, Huaiyu
    INORGANICS, 2023, 11 (04)
  • [50] In situ growth of ZnO nanodots on carbon hierarchical hollow spheres as high-performance electrodes for lithium-ion batteries
    Yang, Tao
    Liu, Yangai
    Huang, Zhaohui
    Liu, Jianwen
    Bian, Pengju
    Ling, Christopher D.
    Liu, Hao
    Wang, Guoxiu
    Zheng, Rongkun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 735 : 1079 - 1087