Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries

被引:145
|
作者
Ji, Liwen [1 ]
Yao, Yingfang [1 ]
Toprakci, Ozan [1 ]
Lin, Zhan [1 ]
Liang, Yinzheng [1 ]
Shi, Quan [1 ]
Medford, Andrew J. [1 ]
Millns, Christopher R. [1 ]
Zhang, Xiangwu [1 ]
机构
[1] N Carolina State Univ, Dept Text Engn Chem & Sci, Fiber & Polymer Sci Program, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
Electrospinning; Carbon nanofibers; Polyacrylonitrile; Polypyrrole; Lithium-ion batteries; ORDERED MESOPOROUS CARBON; NANOSTRUCTURED MATERIALS; POLYPYRROLE NANOTUBES; SECONDARY BATTERIES; ENERGY-CONVERSION; STORAGE DEVICES; ANODE MATERIAL; NANOCOMPOSITE; COMPOSITE; MORPHOLOGY;
D O I
10.1016/j.jpowsour.2009.10.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon nanofibers were prepared through electrospinning a blend solution of polyacrylonitrile and polypyrrole, followed by carbonization at 700 degrees C. Structural features of electrospun polyacrylonitrile/polypyrrole bicomponent nanofibers and their corresponding carbon nanofibers were characterized using scanning electron microscopy, differential scanning calorimeter, thermo-gravimetric analysis, wide-angle X-ray diffraction, and Raman spectroscopy. It was found that intermolecular interactions are formed between two different polymers, which influence the thermal properties of electrospun bicomponent nanofibers. In addition, with the increase of polypyrrole concentration, the resultant carbon nanofibers exhibit increasing disordered structure. These carbon nanofibers were used as anodes for rechargeable lithium-ion batteries without adding any polymer binder or conductive material and they display high reversible capacity, improved cycle performance, relatively good rate capability, and clear fibrous morphology even after 50 charge/discharge cycles. The improved electrochemical performance of these carbon nanofibers can be attributed to their unusual surface properties and unique structural features, which amplify both surface area and extensive intermingling between electrode and electrolyte phases over small length scales, thereby leading to fast kinetics and short pathways for both Li ions and electrons. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2050 / 2056
页数:7
相关论文
共 50 条
  • [41] Highly uniform silicon nanoparticle/porous carbon nanofiber hybrids towards free-standing high-performance anodes for lithium-ion batteries
    Wang, Ming-Shan
    Song, Wei-Li
    Wang, Jia
    Fan, Li-Zhen
    CARBON, 2015, 82 : 337 - 345
  • [42] Effects of polypyrrole on the performance of nickel oxide anode materials for rechargeable lithium-ion batteries
    Idris, Nurul H.
    Wang, Jiazhao
    Chou, Shulei
    Zhong, Chao
    Rahman, Md. Mokhlesur
    Liu, Huakun
    JOURNAL OF MATERIALS RESEARCH, 2011, 26 (07) : 860 - 866
  • [43] MgV3O8 incorporated carbon nanofibers as anode material for high-performance lithium-ion batteries
    Shanthappa, R.
    Narsimulu, D.
    Kakarla, Ashok Kumar
    Yu, Jae Su
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 971
  • [44] Enhanced Thermal Stability and Electrochemical Performance of Polyacrylonitrile/Cellulose Acetate-Electrospun Fiber Membrane by Boehmite Nanoparticles: Application to High-Performance Lithium-Ion Batteries
    Yang, Na
    Liang, Yuhao
    Jia, Shaojin
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2021, 306 (10)
  • [45] Carbon-encapsulated silicon ordered nanofiber membranes as high-performance anode material for lithium-ion batteries
    Zhang, Meng
    Bai, Nan
    Lin, Wenfeng
    Wang, Hao
    Li, Jin
    Ma, Ling
    Wang, Xiaomeng
    Zhang, Dianping
    Cao, Zhijie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [46] Electrospun Carbon Nanofiber/Boron Nitride Composites as Flexible Anodes for Lithium-Ion Batteries
    Chen, Minghua
    Zhang, Shouzhi
    Zhang, Jiawei
    Chen, Qingguo
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2019, 19 (01) : 220 - 225
  • [47] Electrospun CuFe2O4 nanotubes as anodes for high-performance lithium-ion batteries
    Peng, Shengjie
    Li, Linlin
    Srinivasan, Madhavi
    JOURNAL OF ENERGY CHEMISTRY, 2014, 23 (03) : 301 - 307
  • [48] High-performance Sn-Ni alloy nanorod electrodes prepared by electrodeposition for lithium ion rechargeable batteries
    Jiang, Dongdong
    Ma, Xiaohua
    Fu, Yanbao
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2012, 42 (08) : 555 - 559
  • [49] Encapsulating silicon particles by graphitic carbon enables High-performance Lithium-ion batteries
    Zhao, Jinfu
    Rui, Binglong
    Wei, Wenxian
    Nie, Ping
    Chang, Limin
    Xue, Xiangxin
    Wang, Limin
    Jiang, Jiangmin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 607 : 1562 - 1570
  • [50] FeS2 encapsulated with mesoporous carbon for high-performance lithium-ion batteries
    Heguang Liu
    Ruixuan Jing
    Zilu Wang
    Caiyin You
    MRS Communications, 2021, 11 : 418 - 424