Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries

被引:145
|
作者
Ji, Liwen [1 ]
Yao, Yingfang [1 ]
Toprakci, Ozan [1 ]
Lin, Zhan [1 ]
Liang, Yinzheng [1 ]
Shi, Quan [1 ]
Medford, Andrew J. [1 ]
Millns, Christopher R. [1 ]
Zhang, Xiangwu [1 ]
机构
[1] N Carolina State Univ, Dept Text Engn Chem & Sci, Fiber & Polymer Sci Program, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
Electrospinning; Carbon nanofibers; Polyacrylonitrile; Polypyrrole; Lithium-ion batteries; ORDERED MESOPOROUS CARBON; NANOSTRUCTURED MATERIALS; POLYPYRROLE NANOTUBES; SECONDARY BATTERIES; ENERGY-CONVERSION; STORAGE DEVICES; ANODE MATERIAL; NANOCOMPOSITE; COMPOSITE; MORPHOLOGY;
D O I
10.1016/j.jpowsour.2009.10.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon nanofibers were prepared through electrospinning a blend solution of polyacrylonitrile and polypyrrole, followed by carbonization at 700 degrees C. Structural features of electrospun polyacrylonitrile/polypyrrole bicomponent nanofibers and their corresponding carbon nanofibers were characterized using scanning electron microscopy, differential scanning calorimeter, thermo-gravimetric analysis, wide-angle X-ray diffraction, and Raman spectroscopy. It was found that intermolecular interactions are formed between two different polymers, which influence the thermal properties of electrospun bicomponent nanofibers. In addition, with the increase of polypyrrole concentration, the resultant carbon nanofibers exhibit increasing disordered structure. These carbon nanofibers were used as anodes for rechargeable lithium-ion batteries without adding any polymer binder or conductive material and they display high reversible capacity, improved cycle performance, relatively good rate capability, and clear fibrous morphology even after 50 charge/discharge cycles. The improved electrochemical performance of these carbon nanofibers can be attributed to their unusual surface properties and unique structural features, which amplify both surface area and extensive intermingling between electrode and electrolyte phases over small length scales, thereby leading to fast kinetics and short pathways for both Li ions and electrons. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2050 / 2056
页数:7
相关论文
共 50 条
  • [21] A high performance silicon/carbon composite anode with carbon nanofiber for lithium-ion batteries
    Si, Q.
    Hanai, K.
    Ichikawa, T.
    Hirano, A.
    Imanishi, N.
    Takeda, Y.
    Yamamoto, O.
    JOURNAL OF POWER SOURCES, 2010, 195 (06) : 1720 - 1725
  • [22] Pyrolytic carbon-coated silicon/carbon nanofiber composite anodes for high-performance lithium-ion batteries
    Chen, Yanli
    Hu, Yi
    Shao, Jianzhong
    Shen, Zhen
    Chen, Renzhong
    Zhang, Xiangwu
    He, Xia
    Song, Yuanze
    Xing, Xiuli
    JOURNAL OF POWER SOURCES, 2015, 298 : 130 - 137
  • [23] Graphite recycling from spent lithium-ion batteries for fabrication of high-performance aluminum-ion batteries
    Wang, Li
    Wang, Chao
    Zhang, Jing-Yi
    Qiu, Jia-Cheng
    Fu, Xu-Wang
    Zhang, Zi-Rui
    Feng, Jian-Min
    Dong, Lei
    Long, Cong-Lai
    Li, De-Jun
    Wang, Xiao-Wei
    Zhang, Bao
    Zhang, Jia-Feng
    Zhao, Rui-Rui
    RARE METALS, 2024, 43 (05) : 2161 - 2171
  • [24] Graphite recycling from spent lithium-ion batteries for fabrication of high-performance aluminum-ion batteries
    Li Wang
    Chao Wang
    Jing-Yi Zhang
    Jia-Cheng Qiu
    Xu-Wang Fu
    Zi-Rui Zhang
    Jian-Min Feng
    Lei Dong
    Cong-Lai Long
    De-Jun Li
    Xiao-Wei Wang
    Bao Zhang
    Jia-Feng Zhang
    Rui-Rui Zhao
    Rare Metals, 2024, 43 : 2161 - 2171
  • [25] Graphite recycling from spent lithium-ion batteries for fabrication of high-performance aluminum-ion batteries
    Li Wang
    Chao Wang
    Jing-Yi Zhang
    Jia-Cheng Qiu
    Xu-Wang Fu
    Zi-Rui Zhang
    Jian-Min Feng
    Lei Dong
    Cong-Lai Long
    De-Jun Li
    Xiao-Wei Wang
    Bao Zhang
    Jia-Feng Zhang
    Rui-Rui Zhao
    RareMetals, 2024, 43 (05) : 2161 - 2171
  • [26] Encapsulation of MnO Nanocrystals in Electrospun Carbon Nanofibers as High-Performance Anode Materials for Lithium-Ion Batteries
    Liu, Bin
    Hu, Xianluo
    Xu, Henghui
    Luo, Wei
    Sun, Yongming
    Huang, Yunhui
    SCIENTIFIC REPORTS, 2014, 4
  • [27] Encapsulation of MnO Nanocrystals in Electrospun Carbon Nanofibers as High-Performance Anode Materials for Lithium-Ion Batteries
    Bin Liu
    Xianluo Hu
    Henghui Xu
    Wei Luo
    Yongming Sun
    Yunhui Huang
    Scientific Reports, 4
  • [28] Applications of carbide-derived carbon as electrodes for rechargeable lithium-ion batteries
    Yeon, Sun-Hwa
    Jung, Kyu-Nam
    Yoon, Sukeun
    Shin, Kyoung-Hee
    Jeon, Jae-Deok
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [29] Multifunctional natural agarose as an alternative material for high-performance rechargeable lithium-ion batteries
    Hwang, Gaeun
    Kim, Ju-Myung
    Hong, Dongki
    Kim, Choon-Ki
    Choi, Nam-Soon
    Lee, Sang-Young
    Park, Soojin
    GREEN CHEMISTRY, 2016, 18 (09) : 2710 - 2716
  • [30] High-Performance Polyoxometalate-Based Cathode Materials for Rechargeable Lithium-Ion Batteries
    Chen, Jia-Jia
    Symes, Mark D.
    Fan, Shao-Cong
    Zheng, Ming-Sen
    Miras, Haralampos N.
    Dong, Quan-Feng
    Cronin, Leroy
    ADVANCED MATERIALS, 2015, 27 (31) : 4649 - 4654