Multiscale nanowire-microfluidic hybrid strain sensors with high sensitivity and stretchability

被引:78
作者
Han, Songjia [1 ,2 ]
Liu, Chunrui [1 ,2 ]
Xu, Huihua [1 ,2 ]
Yao, Dongyuan [1 ,2 ]
Yan, Kanghong [1 ,2 ]
Zheng, Huanliang [1 ,2 ]
Chen, Hui-Jiuan [1 ,2 ]
Gui, Xuchun [1 ,2 ]
Chu, Sheng [3 ]
Liu, Chuan [1 ,2 ]
机构
[1] Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Sch Elect & Informat Technol, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Guangdong Prov Key Lab Display Mat & Technol, Sch Elect & Informat Technol, Guangzhou 510275, Peoples R China
[3] Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Sch Mat Sci & Engn, Guangzhou 510275, Peoples R China
关键词
CARBON NANOTUBES; TRANSPARENT; CONDUCTORS; SKIN; ELECTRODES;
D O I
10.1038/s41528-018-0029-x
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nanomaterials with low-dimensional morphology have been explored for enhancing the performance of strain sensors, but it remains difficult to achieve high stretchability and sensitivity simultaneously. In this work, a composite structure strain sensor based on nanomaterials and conductive liquid is designed, demonstrated, and engineered. The nanowire-microfluidic hybrid (NMH) strain sensor responds to multiscale strains from 4% to over 400%, with a high sensitivity and durability under small strain. Metal nanowires and carbon nanotubes are used to fabricate the NMH strain sensors, which simultaneously exhibit record-high average gauge factors and stretchability, far better than the conventional nanowire devices. Quantitative modeling of the electrical characteristics reveals that the effective conductivity percolation through the hybrid structures is the key to achieving high gauge factors for multiscale sensing. The sensors can operate at low voltages and are capable of responding to various mechanical deformations. When fixed on human skin, the sensors can monitor large-scale deformations (skeleton motion) and small-scale deformations (facial expressions and pulses). The sensors are also employed in multichannel, interactive electronic system for wireless control of robotics. Such demonstrations indicate the potential of the sensors as wearable detectors for human motion or as bionic ligaments in soft robotics. Nanowire-microfluidic strain sensors: a stretchable multi-scale sensing solutionBy combining metal nanowires and conductive polymers, high-performance stretchable nanowire-microfluidic strain sensors are realized. A team lead by Chuan Liu from the School of Electronics and Information Technology at Sun Yat-Sen University developed a hybrid strain sensor consisting of brittle metal nanowires and conductive polymers. These robust nanowire-microfluidic strain sensors are sensitive to multiscale strains--from 4% to over 400%--and show record-high gauge factor, a figure-of-merit that quantifies the level of sensitivity. The hybrid strain sensor's high performance is made possible by the electric percolation pathways formed between the parallel nanowire network and the microfluidic channels. The combination of high stretchability and high sensitivity over a large strain range enables the device to be suitable for multiscale sensing. Liu and coworkers demonstrate the applicability of their nanowire-microfluidic strain sensors to human motion detection and human-machine interactive systems.
引用
收藏
页数:10
相关论文
共 47 条
[1]   Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review [J].
Amjadi, Morteza ;
Kyung, Ki-Uk ;
Park, Inkyu ;
Sitti, Metin .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (11) :1678-1698
[2]   Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites [J].
Amjadi, Morteza ;
Yoon, Yong Jin ;
Park, Inkyu .
NANOTECHNOLOGY, 2015, 26 (37)
[3]   Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite [J].
Amjadi, Morteza ;
Pichitpajongkit, Aekachan ;
Lee, Sangjun ;
Ryu, Seunghwa ;
Park, Inkyu .
ACS NANO, 2014, 8 (05) :5154-5163
[4]   Sensitive, High-Strain, High-Rate Bodily Motion Sensors Based on Graphene-Rubber Composites [J].
Boland, Conor S. ;
Khan, Umar ;
Backes, Claudia ;
O'Neill, Arlene ;
McCauley, Joe ;
Duane, Shane ;
Shanker, Ravi ;
Liu, Yang ;
Jurewicz, Izabela ;
Dalton, Alan B. ;
Coleman, Jonathan N. .
ACS NANO, 2014, 8 (09) :8819-8830
[5]   Super-stretchable, Transparent Carbon Nanotube-Based Capacitive Strain Sensors for Human Motion Detection [J].
Cai, Le ;
Song, Li ;
Luan, Pingshan ;
Zhang, Qiang ;
Zhang, Nan ;
Gao, Qingqing ;
Zhao, Duan ;
Zhang, Xiao ;
Tu, Min ;
Yang, Feng ;
Zhou, Wenbin ;
Fan, Qingxia ;
Luo, Jun ;
Zhou, Weiya ;
Ajayan, Pulickel M. ;
Xie, Sishen .
SCIENTIFIC REPORTS, 2013, 3
[6]   Highly Stretchable, Hysteresis-Free Ionic Liquid -Based Strain Sensor for Precise Human Motion Monitoring [J].
Choi, Dong Yun ;
Kim, Min Hyeong ;
Oh, Yong Suk ;
Jung, Soo-Ho ;
Jung, Jae Hee ;
Sung, Hyung Jin ;
Lee, Hyung Woo ;
Lee, Hye Moon .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (02) :1770-1780
[7]   A Highly Elastic, Capacitive Strain Gauge Based on Percolating Nanotube Networks [J].
Cohen, Daniel J. ;
Mitra, Debkishore ;
Peterson, Kevin ;
Maharbiz, Michel M. .
NANO LETTERS, 2012, 12 (04) :1821-1825
[8]   Simulation and experimental characterization of polymer/carbon nanotubes composites for strain sensor applications [J].
De Vivo, B. ;
Lamberti, P. ;
Spinelli, G. ;
Tucci, V. ;
Vertuccio, L. ;
Vittoria, V. .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (05)
[9]   One-Step Fabrication of Stretchable Copper Nanowire Conductors by a Fast Photonic Sintering Technique and Its Application in Wearable Devices [J].
Ding, Su ;
Jiu, Jinting ;
Gao, Yue ;
Tian, Yanhong ;
Araki, Teppei ;
Sugahara, Tohru ;
Nagao, Shijo ;
Nogi, Masaya ;
Koga, Hirotaka ;
Suganuma, Katsuaki ;
Uchida, Hiroshi .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (09) :6190-6199
[10]   A Stretchable Electronic Fabric Artificial Skin with Pressure-, Lateral Strain-, and Flexion-Sensitive Properties [J].
Ge, Jin ;
Sun, Li ;
Zhang, Fu-Rui ;
Zhang, Ye ;
Shi, Lu-An ;
Zhao, Hao-Yu ;
Zhu, Hong-Wu ;
Jiang, Hai-Long ;
Yu, Shu-Hong .
ADVANCED MATERIALS, 2016, 28 (04) :722-728